2024 年度 システム理工学部

電子情報システム学科

自己点検・評価報告書

2025年3月31日

目次

第1章 理念・目的

評定 A	
基本情報一覧	4
1. 現状分析	5
2. 分析を踏まえた長所と問題点	6
3. 改善・発展方策と全体のまとめ	6
4. 根拠資料	6
第4章 教育・学習	
評定 A	
基本情報一覧	8
1. 現状分析	10
2. 分析を踏まえた長所と問題点	17
3. 改善・発展方策と全体のまとめ	18
4. 根拠資料	18
第 5 章 学生の受け入れ	
評定 A 	
基本情報一覧	
1. 現状分析	
2. 分析を踏まえた長所と問題点	
3. 改善・発展方策と全体のまとめ	
4. 根拠資料	22
第6章 教員・教員組織	
デー・ファイン・ファイン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン	
基本情報一覧	23
1. 現状分析	23
2. 分析を踏まえた長所と問題点	
3. 改善・発展方策と全体のまとめ	
4. 根拠資料	
第 12 章 産学連携活動	
1. 現状分析	27
2. 分析を踏まえた長所と問題点	27
3. 改善・発展方策と全体のまとめ	27
4. 根拠資料	28

第 13	章 芝浦工大の SDGs への挑戦 "Strategy of SIT to promote SDGs"	
1.	現状分析	29
2.	分析を踏まえた長所と問題点	29
3.	改善・発展方策と全体のまとめ	29
4.	根拠資料	29

第1章 理念・目的

評定 A

基本情報一覧

基本資料

文書	URL・印刷物の名称
規程集	https://kitei2.sic.shibaura-it.ac.jp/ (要認証・学内ユーザーのみ)
寄附行為又は定款	https://www.shibaura- it.ac.jp/about/educational_foundation/summary/endowment.html
学則、大学院学則	https://www.shibaura-it.ac.jp/campus_life/class/index.html
履修要項・シラバス	https://www.shibaura-it.ac.jp/campus_life/class/class.html http://syllabus.sic.shibaura-it.ac.jp/
備考	

大学の理念・目的

規程・各種資料名称(条項)	URL・印刷物の名称
「芝浦工業大学学則」第1条	https://www.shibaura-it.ac.jp/campus_life/class/index.html
備考	

※ 関係法令:学校教育法施行規則第 172 条の 2 第 1 項

学部・研究科等の目的

学部・研究科等の名称	規程・各種資料名称(条項)	URL・印刷物の名称
工学部	教育研究上の目的	https://www.shibaura- it.ac.jp/faculty/engineering/#anc4
システム理工学部	教育研究上の目的	https://www.shibaura- it.ac.jp/faculty/systems/
電子情報システム学科	学則(別表 2-2 学部等における教育研究上の目的及び方針)	https://www.shibaura- it.ac.jp/assets/graduateschool_2024.p df
デザイン工学部	教育研究上の目的	https://www.shibaura- it.ac.jp/faculty/design/#anc4
建築学部	教育研究上の目的	https://www.shibaura- it.ac.jp/faculty/architecture/#anc4
理工学研究科	教育研究上の目的	https://www.shibaura- it.ac.jp/faculty/graduate/#policy
備考		

※ 関係法令:大学設置基準第2条、専門職大学設置基準第2条、大学院設置基準第1条の2、学校教育法施行規則第172条の2第1項

中・長期計画等

名称	URL・印刷物の名称
Centennial SIT Action	https://www.shibaura-it.ac.jp/about/summary/centennial_sit_action.html
備考	

※ 関係法令:国立大学法人設置法第31条、地方独立行政法人法第26条、私立学校法第45条の2

1. 現状分析

評価項目① 大学の理念・目的を適切に設定すること。また、それを踏まえ、学部及び研究科の目的を適切に設定し、公表していること。

<評価の視点>

- 大学が掲げる理念を踏まえ、教育研究活動等の諸活動を方向付ける大学の目的及び学部・研究科における教育研究上の目的を明らかにしているか。
- 理念・目的を教職員及び学生に周知するとともに、社会に公表しているか。

電子情報システム学科の教育研究上の目的は、本学の建学の精神である「社会に学び、 社会に貢献する技術者の育成」とその今日的解釈の「世界に学び、世界に貢献する理工系 人材の育成」、及び、学問体系を横断し関連づけるシステム工学の手法に基づくシステム理 工学部の学修・教育目標を踏まえて、学則で以下のように定めている【資料 1-1】。

電子情報システム学科は、ソフトウェア、メディア・ネットワーク、及びハードウェア技術分野の専門的知識の習得と、問題を自ら発見し解決できるシステム志向のエンジニアを目指し、技術者としての倫理観をもち、多様性を尊重し、持続可能な社会の構築に貢献できる人材を養成することを目的とする。

その教育研究上の目的に関しては、教職員および学生が日々閲覧し、広く社会に公開されている大学 HP【資料 1-1】にて公表している。加えて、教職員および学生に配布される学修の手引【資料 1-2】にて周知している。特に新入生に対しては、毎年4月に実施する電子情報システム学科ガイダンスにおいて詳細な説明を行っている。

以上より、建学の精神とその今日的解釈(大学が掲げる理念)を踏まえた教育研究上の目的を明らかにしていると分析できる。また、教育研究上の目的は、教職員及び学生に適切に周知されており、社会にも公表されていると分析できる。

評価項目② 大学として中・長期の計画その他の諸施策を策定していること。

<評価の視点>

- 中・長期の計画その他の諸施策は、大学内外の状況を分析するとともに、組織、 財政等の資源の裏付けを伴うなど、理念・目的の達成に向けて、具体的かつ実現 可能な内容であるか。
- 中・長期の計画その他の諸施策の進捗及び達成状況を定期的に検証しているか。

本学の長期ビジョンとして、100周年を迎える2027年に無得た取り組み課題を据えて、「Centennial SIT Action」を宣言している。宣言の中では、「理工学教育日本一」、「知と地の

創造拠点」、「グローバル理工学教育モデル校」「ダイバーシティ推進先進校」、「教職協働トップランナー」を目指して取り組んでいる【資料 1-3】。

この「Centennial SIT Action」と連動する形で、電子情報システム学科でも以下の中・長期の計画を策定・実施中である。「グローバル理工学教育モデル校」という目標をふまえ、2017年度には電子情報システム学科内に国際コースを設置した。2019年度より、名称を国際コースから国際プログラムに変更するとともに、システム理工学部すべての学科に同プログラムを設置し、学部全体でグローバル化を推進している。さらに、電子情報システム学科では、従来のプログラム(一般プログラムという)でも留学やGlobal PBLを可能としており、学生には、国際プログラムとともに、柔軟なプログラム選択ができるようにしている。国際系学部では本施策に類似するものも存在するが、理工系学部ではユニークな取組みであり、学科内では教員3名が担当としてプログラムの適切な実施のための体制を整備している。本施策については、学科教員会議にて定期的に担当教員から進捗・達成状況の報告が行われ、必要に応じてその他学科教員の意見も取り入れ方針の検討を行っている【資料1-4】。

以上より、本学の目標および理工系学部の分析に基づいて、学科内で組織体制を整えて、 国際プログラムおよび留学・Global PBL の施策を策定・実施していると分析できる。また、 学科教員会議にて定期的にその進捗・達成状況を検証していると分析できる。

2. 分析を踏まえた長所と問題点

国際プログラム施策の実施にあたり、「国際プログラムサロン」を開催し、国際プログラム所属学生が隔週で留学に関する情報や先輩との情報交換の場を提供している。この一方で、特に本学科の一般プログラム・国際プログラムの目的について、本学部・学科をめざす高校生への認知は改善の余地がある。

3. 改善・発展方策と全体のまとめ

特に本学科の一般プログラム・国際プログラムの目的について、本学部・学科をめざす 高校生、新入生、新入教職員への周知を継続して行い、プログラムにかかわらずグローバ ル対応していることを理解していただくための取組みを行っていく。

電子情報システム学科では、グローバル化の視点を踏まえ、ソフトウェア、メディア・ネットワーク、及びハードウェア技術分野の専門的知識の習得と、問題を自ら発見し解決できるシステム志向のエンジニアを目指し、技術者としての倫理観をもち、多様性を尊重し、持続可能な社会の構築に貢献できる人材を養成することを目的とし、その目的を教職員及び学生に周知するとともに、社会に対して公表している。本学科では、本学の長期ビジョンの一つである「グローバル理工学教育モデル校」という目標をふまえ、従来の一般プログラムとともに、国際プログラムを整備してきた。更に一般プログラムでも留学やGlobal PBL を可能とするようにグローバル理工学教育の対象学生を拡大し、その運営にあたって適切な体制を整備している。

4. 根拠資料

- 1-1 大学ホームページ/学部・大学院/システム理工学部/電子情報システム学科 https://www.shibaura-it.ac.jp/faculty/systems/eis/
- 1-2 学修の手引(システム理工学部 2024 年度版)

- 1-3 芝浦工業大学の長期ビジョン Centennial SIT Action https://www.shibaura-it.ac.jp/about/summary/centennial_sit_action.html
- 1-4 2024 年度第 2 回電子情報システム学科会議議事録

評定 A

基本情報一覧

学位授与方針・教育課程の編成実施方針・学生の受け入れ方針

<u> </u>	3 = 22,77 (10,77)
学部・研究科等名称	URL
工学部	https://www.shibaura-it.ac.jp/faculty/engineering/#anc4
システム理工学部	https://www.shibaura-it.ac.jp/faculty/systems/#anc4
デザイン工学部	https://www.shibaura-it.ac.jp/faculty/design/#anc4
建築学部	https://www.shibaura-it.ac.jp/faculty/architecture/#anc4
大学院 理工学研究科	https://www.shibaura-it.ac.jp/faculty/graduate/#policy
備考	

関係法令:学校教育法施行規則第172条の2第1項

履修登録単位数の上限設定(改善報告書に対して改善されたと評価された場合又は大学 評価において改善提言を受けておらず変更もしていない場合は不要)

学部・学科名、学年等	上限値履修登録単位の	期間	成績優秀者への緩和	成績優秀者の基準	除外科目の有無
システム理工学部	25 単位	半期	0	前期の GPA 値が一定以上の学 生は半期 30 単位までの履修 登録可能	0
備考	例)前回省略	評価から変	更がた	ないため法学部及びグローバル学	部は

- ※ 関係法令:大学設置基準第27条の2、専門職大学設置基準第22条
- ※ 学部・学科ごとに履修登録単位数の上限設定が異なる場合、また、学部・学科内で学年によって設定を 変えている場合にはそれぞれ区分して作表してください。
- ※「成績優秀者への緩和」欄は、大学設置基準第27条の2第2項に該当する措置を講じている場合に○を 選択し、成績優秀者の基準(GPA値など)を記入してください。該当しない場合、基準・割合欄の入 力は不要です。
- ※ どのような考え・設計で履修登録単位数の上限設定(成績優秀者への緩和措置、除外科目の設定も含む)をしているのか、「備考」欄に説明してください。

卒業・修了要件の設定及び明示

学部・研究科等名称(研 究科は学位課程別)	卒業・修了 要件単位数	既 修 得 等 (注)の認定 上限単位数	URL・印刷物の名称
システム理工学部	124	60	学習の手引き
			https://guide.shibaura- it.ac.jp/tebiki2024/systems/
備考			

※ 関係法令: 大学設置基準第28条、第29条、第30条及び第32条、第42条の12、

専門職大学設置基準第24条、第25条、第26条、第29条及び第30条、

大学院設置基準第16条及び第17条、

専門職大学院設置基準第 14 条、第 15 条、第 21 条、第 22 条、第 23 条、第 27 条、第 28 条 及び第 29 条

※注:

[学士] 大学設置基準第28条から第30条までの規定に基づく措置(それらを合せた上限値)

[専門職大学] 専門職大学設置基準第24条から26条までの規定に基づく措置(それらを合せた上限値)

[修士・博士] 大学院設置基準第 15 条によって準用する大学設置基準第 28 条及び第 30 条の規定にもとづく措置(それらを合せた上限値)

[専門職] 専門職大学院設置基準第 14 条、第 21 条、第 22 条、第 27 条及び第 28 条の規定に基づく 措置

学部・研究科等における点検・評価活動の状況

学部・研究科等名称	実施年度・実施体制	点検・評価報告書等
工学部		工学部自己点検・評価報告書、
システム理工学部		システム理工学部自己点検・評価報告書、電子情報システム学科自己点検・評価報告書、機械制御システム学科自己点検・評価報告書、環境システム学科自己点検・評価報告書、生命科学科自己点検・評価報告書、数理科学科自己点検・評価報告書、基礎部会自己点検・評価報告書、総合部会自己点検・評価報告書、教職課程自己点検・評価報告書、教職課程自己点検・評価報告書
デザイン工学部		デザイン工学部自己点検・評価報告書、教職課程自己点検・評価報告書
建築学部		建築学部自己点検・評価報告書

学部・研究科等名称	実施年度・実施体制	点検・評価報告書等
大学院 理工学研究科		大学院理工学研究科自己点検・ 評価報告書、教職課程自己点検・ 評価報告書
備考		

1. 現状分析

評価項目① 達成すべき学習成果を明確にし、教育・学習の基本的なあり方を示していること。

<評価の視点>

- 学位授与方針において、学生が修得すべき知識、技能、態度等の学習成果を明らかにしているか。また、教育課程の編成・実施方針において、学習成果を達成するために必要な教育課程及び教育・学習の方法を明確にしているか。
- 上記の学習成果は授与する学位にふさわしいか。

電子情報システム学科では、情報工学、通信工学、電子工学を含む電子情報技術という幅広い分野に対する基礎知識を身につけたうえで、専門とする分野を持ち、システム工学の理論と手法、総合的問題解決策を導き出す能力、社会的・技術的要求に対して創造的かつ的確なシステムを構築する能力、技術的倫理観を修得し、卒業時には、以下の学修・教育目標(ディプロマ・ポリシー【資料 4-1】)に示す能力(学習成果)を身につけていることが求められるとしている。

- 一般プログラムでは、具体的に下記の6つの学習成果を達成することとしている。
- 1) 広い裾野を持った専門的知識: 「ソフトウェア技術」、「メディア・ネットワーク技術」、および「ハードウェア技術」のいずれかの分野に基盤を置き、それ以外の2分野を包含する幅広い裾野をもった基礎的知識と深い専門知識を身につけている。
- 2) 知識の修得から実践へ: 知識を単に「知っている」というレベルにとどめることなく、問題を自ら発見し、解決することができる。
- 3) システム志向のエンジニア: 現実の問題と対象の性質を把握し、抽象化・モデル化する「システム思考」、モデルを解析することにより最適な解決方法を探り、その方法に基づきシステムを実現する「システム手法」、そして問題解決のために必要な人・知識・技術を統合し、マネジメントできる「システムマネジメント」を身につけている。
- 4) システム開発力の修得: 社会的・技術的要求に対して、創造的かつ的確なシステムを構築することができる。
- 5) 技術者としての倫理観の修得: 社会人、および技術者としての倫理観に基づき、実 社会において技術者としての責任を果たし、技術と社会のかかわり合いについて技 術者の立場から考えることができる。

6) 技術者としてのコミュニケーション能力の獲得: 技術者としてふさわしい水準の 日本語および英語を用いたコミュニケーション能力を身につけている。

国際プログラムでは、1)、2)、3)、5)、6)の学修・教育は一般プログラムと共通であるが、4)に代わり、下記の学習成果を達成することとしている。

4) グローバル技術者としての多様性の理解と国際的素養の醸成: 世界で活躍できる エンジニアとして、グローバルな視点から社会的および文化的多様性を理解し、尊 重するとともに、自己の考えを持ち、適切に表現できる。

本学科でのこのポリシーに基づいて課程修了者に学位(学士(工学))を与える。ディプロマ・ポリシーは大学ホームページ【資料 4-2】および学修の手引【資料 4-1】で公表している。

上記の学習成果の達成のために、ソフトウェア分野、メディア・ネットワーク分野、ハードウェア分野いずれかに基盤をおいた専門性を学生に身につけさせるとともに、他の2分野についても基礎知識を併せて修得させるカリキュラムを、以下のカリキュラム・ポリシー【資料 4-1】に基づき、編成している。一般プログラムでは、具体的に、以下のポリシーである。

- ① ソフトウェア分野の科目では、C 言語や Java などのプログラミング言語、OS、データベースなどの基本的な情報技術分野、人工知能基礎や言語理論などの計算機科学分野、ソフトウェア設計・開発技術を学修する。
- ② メディア・ネットワーク分野の科目では、画像処理、信号解析、インターネット、無線通信、情報伝送などメディア・ネットワーク系の基礎理論からユビキタス社会のインフラを支える技術を学修する。
- ③ ハードウェア分野の科目では、電気磁気学、電気回路、電子回路、論理回路、半導体、LSI、電子デバイス、システム制御などハードウェアの基礎理論から現在のエレクトロニクス技術を学修する。
- ④ 「知識の修得から実践へ」を実現するため、講義科目と連携した実験・演習科目を、1 年次から3年次まで切れ目なく設置することで、単なる知識の修得ではなく、専門知 識を実践的に学修する。
- ⑤ 1年次から3年次まで、共通科目のシステム工学演習等と切れ目なく連携を図り、専門知識を基にしたシステム思考、システム手法、システムマネジメント、そしてコミュニケーションスキルを養成する。
- ⑥ 培った幅広い基礎的知識と深い専門知識を駆使し、各自が設定したテーマを解明し総合的解決策を導き出す能力を養う。

国際プログラムではカリキュラム・ポリシー①、②、③、⑤は一般プログラムと共通であるが、④及び⑥は、下記のように設定している。

④ 「知識の修得から実践へ」を実現するため、講義科目、実験・演習・実習科目を、国内外において、日本語と英語で実践的に学修する。

⑥ 培った幅広い基礎的知識と専門知識を駆使し、英語による総合研究論文の執筆と発表を行うことで、グローバルに活躍できる技術者としての素養と総合的解決策を導き出す能力を養う。

なお、本学科のカリキュラム・ポリシーは大学ホームページ【資料 4-2】および学修の手引【資料 4-1】で公表している。

これに加えて、ミドルレベル・ディプロマ・ポリシーとして、学科のディプロマ・ポリシーを9つの達成する学習成果として、具体化・詳細化している。

- A) 地球的視点から多面的に物事を考えるシステム思考とその素養。(広い視野)
- B) 技術が社会や自然に及ぼす影響や効果、ならびに技術者および科学者が社会に対して負っている責任を理解し、社会に貢献する職業人として倫理観に基づき行動できる。(職業倫理)
- C) 数学、自然科学及び情報技術に関する知識とそれらを応用できる能力。(専門基礎)
- D) 現代社会の問題を創造性を発揮して探求し、目的達成に向けて関連する科学技術や 知識を統合し、総合的解決策を導き出す能力。(システムズ・エンジニアリング能力)
- E) 問題解決のために必要な人・知識・技術を統合し、マネジメントできる。(システムマネジメント)
- F) 学際的チームで活動できる。(チーム活動能力)
- G) 理工学の専門知識とそれらを問題解決に応用できる能力。(専門知識とそれを用いた 問題解決)
- H) 論理的な記述力、口頭発表力、討議等のコミュニケーション能力及び国際的に通用するコミュニケーション基礎能力。(コミュニケーション能力)
- I) 自主的、継続的に学修できる。(生涯学修能力)

学位授与方針(ディプロマ・ポリシー)に関して、電子情報システム学科の専門性を考慮して学部のディプロマ・ポリシーを具体化したものになっている。さらに、ミドルレベル・ディプロマ・ポリシーを定め、学科のディプロマ・ポリシーをより具体化・詳細化して記述している。以上のことから、適切に明確化されていると分析できる。

また、教育課程の編成・実施方針(カリキュラム・ポリシー)に関して、教育課程と学 習方法が説明されており、適切に明確化されていると分析できる。

上記の学習成果(ミドルレベル・ディプロマ・ポリシーの A)~I)の内容)は、理工学系・農学系の高等教育機関の技術者教育プログラムに対する認定制度である JABEE の認定基準が明らかにしている「学修・到達目標」と対応・整合しており、授与する学位である学士(工学)として妥当であると分析できる。

評価項目② 学習成果の達成につながるよう各学位課程にふさわしい授業科目を開設し、教育課程を体系的に編成していること。

<評価の視点>

• 学習成果の達成につながるよう、教育課程の編成・実施方針に沿って授業科目を 開設し、教育課程を体系的に編成しているか。

- 具体的な例
- 授与する学位と整合し専門分野の学問体系等にも適った授業科目の開講。
- 各授業科目の位置づけ(主要授業科目の類別等)と到達目標の明確化。
- 学習の順次性に配慮した授業科目の年次・学期配当及び学びの過程の可視化。
- 学生の学習時間の考慮とそれを踏まえた授業期間及び単位の設定。

電子情報システム学科では、学習成果の達成につながる授業科目を開設し、教育課程を 体系的に編成している。

その1番目の例として、授与する学位と整合し、専門分野の学問体系等にも適った授業科目開講を行っている。本学科のカリキュラム・ポリシーに基づき開講している専門科目は全部で67科目あり、このうち、ソフトウェア分野が19科目(内英語開講科目5科目)、メディア・ネットワーク分野が17科目(内英語開講科目1科目)、ハードウェア分野が18科目(内英語開講科目3科目)、そして、総論・実験・テクニカルセミナー・Global PBL・総合研究I,IIからなる複合領域が13科目である(内英語科目5科目)【資料4-1】。この他に、全学共通科目、総合科目、共通科目(基礎科目)、共通科目(システム・情報科目)を開設している。

当学科で開講されている演習・実験科目は共通科目(システム・情報科目)として1年前期の「情報処理演習 I」および1年次後期の「情報処理演習 II」がある。また、2年次前期には「プログラミング演習 I」が、そして2年次後期には「電子情報基礎実験」、「プログラミング演習 II」が開講され、3年次前期には、「電子情報実験 I」、「情報実験 I」が開講されている。これらに3年次後期開講の「電子情報実験 II」、および「情報実験 II」を加え、さらに、3年留学時対応として、前期・後期に「国際電子情報実験 I,II」を設置し、全部で11科目に及んでいる。これらのうち、講義科目と連携した演習科目については当該講義科目の担当者との継続的な見直しが続いており、常に講義科目と深い関連を保つよう努めている。また集大成的な実験科目である「電子情報実験 I、II」および「情報実験 I、II」においても題材や提出物などについて継続的な検討を加えており、特に複数の教員が担当する情報実験 I、II においては担当教員が毎年開講前に会合を持ち、システム開発の手順や提出物、評価基準などについてのすりあわせを実施している。

2番目の例として、各授業科目の位置づけとして主要授業科目の類別と到達目標の明確化を行っている。ミドルレベル・ディプロマ・ポリシーとして分類した学修・教育到達目標ごとに、科目群の中から主要科目を設定し、可能な限り必修あるいは選択必修科目として指定している。なお、各授業科目はシラバスにおいてミドルレベル・ディプロマ・ポリシーと対応した達成目標を記述しており、到達目標が明確化されている。

3 番目の例として、学習の順次性に配慮した授業科目の年次・学期配当及び学びの過程の可視化を行っている。教職員・学生が日常的に参照する学修の手引【資料 4-1】では学修・教育到達目標を達成するための流れを「カリキュラムツリー」として整理している。A)から I)までミドルレベル・ディプロマ・ポリシーとして分類した学修・教育到達目標ごとの科目分類について、配当年次・学期と科目間の関係性を図として表現している。

4 番目の例として、学生の学習時間の考慮とそれを踏まえた授業期間及び単位の設定を 行っている。各科目のシラバスでは授業計画を提示し、学生が必要となる学習時間を見積 もったものも示している。このとき、学生が必要となる学習時間の観点から単位数の設定 を行っている。また学生が現実的な学習時間で学びを進められるよう、履修上の制約として履修単位上限(半期 25 単位以下)を設けている。授業期間も学生の学習時間を考慮して半期 14 週での実施としている。

これらから、ミドルレベル・ディプロマ・ポリシーとして分類した学修・教育到達目標 ごとに、科目群の中から設定した主要科目が必修あるいは選択必修として履修することが 必ず満たされているわけではないが、他の例から全体的に、学習成果の達成につながる授 業科目を開設し、教育課程を体系的に編成していると分析できる。

評価項目③ 課程修了時に求められる学習成果の達成のために適切な授業形態、方法をとっていること。また、学生が学習を意欲的かつ効果的に進めるための指導や支援を十分に行っていること。

<評価の視点>

- 授業形態、授業方法が学部・研究科の教育研究上の目的や課程修了時に求める学習成果及び教育課程の編成・実施方針に応じたものであり、期待された効果が得られているか。
- ICT を利用した遠隔授業を提供する場合、自らの方針に沿って、適した授業科目に 用いられているか。また、効果的な授業となるような工夫を講じ、期待された効果が得られているか。
- 授業の目的が効果的に達成できるよう、学生の多様性を踏まえた対応や学生に対する適切な指導等を行い、それによって学生が意欲的かつ効果的に学習できているか。
- 具体的な例
- 学習状況に応じたクラス分けなど、学生の多様性への対応。
- 単位の実質化(単位制度の趣旨に沿った学習内容、学習時間の確保)を図る措 置。
- シラバスの作成と活用(学生が授業の内容や目的を理解し、効果的に学習を進めるために十分な内容であるか。)。
- 授業の履修に関する指導、学習の進捗等の状況や学生の学習の理解度・達成度 の確認、授業外学習に資するフィードバック等などの措置。

電子情報システム学科では、課程終了時に求められる学習成果の達成のために適切な授業形態、方法をとっている。本学科がソフトウェア分野、メディア・ネットワーク分野、ハードウェア分野のそれぞれにおいて社会に役立つ人材を輩出することを目的としていることから、これらに関連する学問分野において単に講義を通じて知識を習得するだけでなく、演習や実験によって講義で学んだ知識を実践的に身に着けていくことが必要である。このことは当学科が教育の理念・目的において「知識の習得から実践へ」と明確に規定していることにも対応している。これを実現するため、本学科ではカリキュラムにおいてく教育課程・教育内容>で述べたような各科目を互いに連携するよう設計し、中核となる科目については演習科目を開講している。また実験科目は「電子情報基礎実験」、「電子情報実験 I、II」、「情報実験 I、II」の5科目が開講されており、特に2科目の電子情報実験と2科目の情報実験はそれまでに講義や演習で学んできたことの集大成として実施している。

以上から、電子情報システム学科の授業形態と方法は課程終了時に求められる学習成果の 達成のために適切であると分析できる。

ICT を活用した遠隔授業に関しては、2020 年度における新型コロナウイルス感染症への対応として、全学的に Zoom、Teams 等のリモート会議システムが整備され、各教室には授業動画の収録が可能な環境が準備された。2024 年度現在のように、登校が可能となった際にも、欠席者や配慮が必要な学生へ対応すべく授業内容を録画し、授業後に閲覧できるようにしている。また、2020 年度以降、継続的に「遠隔授業に関する FDSD 研究会」を実施し、オンライン講義に関する効果的な取組や工夫について教員間で情報共有してきた。以上のことから、授業での ICT 利用が適切な形で行われており、期待された効果が得られていると考える。

すべての科目のシラバスには、授業の目的、授業計画、達成目標、対応するミドルレベル・ディプロマ・ポリシー、評価方法、評価基準、授業時間外課題の具体的内容とその必要学修時間などが明記されており、学生が効果的に学習を進めるための必要な情報が十分に提供されている。また、授業の目的が効果的に達成できるよう、2016年度より、履修科目登録数に上限を設定し、毎年見直しをしている。2024年度は、3年次までは半期当たり25単位以下、年間50単位未満(ただし前の期のGPAが一定の値以上は半期30単位以下とする。)とした。学修指導に関しては、上述のような科目設置の狙いに適合した履修を学生が行えるようになるため、電子情報システム総論における学習計画書の作成を実施している。更に、履修指導学年担当が成績配布のタイミングを利用して、適宜、学生面談を実施しており、適切な措置が取られていると分析できる。

以上から、授業の目的が効果的に達成できるよう、学生の多様性を踏まえた対応や学生 に対する適切な指導等を行う環境と体制が整備されているといえる。

評価項目④ 成績評価、単位認定及び学位授与を適切に行っていること。

<評価の視点>

- 成績評価及び単位認定を客観的かつ厳格で、公正、公平に実施しているか。
- 成績評価及び単位認定にかかる基準・手続(学生からの不服申立への対応含む) を学生に明示しているか。
- 既修得単位や実践的な能力を修得している者に対する単位の認定等を適切に行っているか。
- 学位授与における実施手続及び体制が明確であるか。
- 学位授与方針に則して、適切に学位を授与しているか。

電子情報システム学科では、成績評価及び単位認定を適切に実施している。

すべての科目のシラバスに、授業の目的、授業計画、達成目標、対応するミドルレベル・ディプロマ・ポリシー、評価方法、評価基準、授業時間外課題の具体的内容と必要学修時間などが明記されており、学生が効果的に学習を進めるために必要な情報が十分に提供されている。

また、成績評価及び単位認定にかかる学生からの問い合わせについては、成績確認期間中に申し出をすることが定められている。質問は、大学 HP に設けられたフォームから提

出できるようになっている【資料 4-3】。担当教員が確実に問い合わせに対応するよう、学生課が回答方法や期日を担当教員と共有して、管理がなされている。

既修得単位や実践的な能力を習得している者に対する単位の認定に関して、他学科、他学部、他大学からの編入学学生の単位認定を行っている。最終的には学部の学外単位等認定委員会が判断を下すものの学科においても認定のための基礎資料を作成している。このとき、当該科目のシラバスを調査し、場合によっては当該科目に関連の深い専任教員の意見、コメントを考慮しつつ行っている。関連して、国際プログラムや一般プログラムにおける留学先での履修科目について、複数の担当教員により、学科の既習科目内容との重複の有無、授業の単位数など詳細を両方のシラバスを比較して単位認定を行っている。

学位授与における実施手続きと体制として、進級条件および総合研究着手条件により学修の質を担保している。3年次までの成績をもとに、学科会議にて総合研究着手条件に基づき、適格者を判定している。

学位授与方針に即して、適切に学位授与を行なっている。総合研究の発表会は、学科全体の教員の参加によって実施されている。2020年度より、総合研究 I,総合研究 I]として、半期ごとに成績評価が行われることとなった。総合研究 I では、研究テーマ設定を中心に研究を進め、総合研究 II では、最終的な総合研究論文提出後に、学位授与基準に基づき学科会議によって卒業の可否を審議している。

評価項目⑤ 学位授与方針に明示した学生の学習成果を適切に把握及び評価していること。

<評価の視点>

- 学習成果を把握・評価する目的や指標、方法等について考えを明確にしているか。
- 学習成果を把握・評価する指標や方法は、学位授与方針に定めた学習成果に照らして適切なものか。
- 指標や方法を適切に用いて学習成果を把握・評価し、大学として設定する目的に応じた活用を図っているか。

学習成果を把握・評価する指標として、GPA を導入している。GPA は学生指導にも利用されている。加えて PROG テストを 1 年次と 3 年次に行い、ジェネリックスキルに関する学習成果を把握している。英語コミュニケーション能力については TOEIC テストを採用して、学習成果を把握している。本学の目標スコアを設定して、TOEIC をもちいた評価の目的を明確している。2020 年度入学生より、ミドルレベル・ディプロマ・ポリシーの達成度を重み付き総平均点によって可視化・評価しており、ミドルレベル・ディプロマ・ポリシーに明示された学習成果を把握している。

学生自身で学習成果を把握するため、SIT ポートフォリオというシステムから、GPA、PROG テスト結果、TOEIC スコア、ミドルレベル・ディプロマ・ポリシーの達成度をすべて集約して把握可能にしている。この情報は教員も確認することができ、学生指導にも活用されている。この他、総合研究 (I, II) について、それぞれの具体的なアウトカムズとルーブリックを示し、総合研究 I 発表会(7月)、総合研究 I 発表会(2月)の計 2回、ルーブリックに基づいて自己評価を行い、総合研究の達成度を自分で確認し、振り返りを

行っている。振返り結果は、指導教員と情報共有され、指導教員から学生へのアドバイス に利用されている。

評価項目⑥ 教育課程及びその内容、教育方法について定期的に点検・評価し、改善・ 向上に向けて取り組んでいること。

<評価の視点>

- 教育課程及びその内容、教育方法に関する自己点検・評価の基準、体制、方法、プロセス、周期等を明確にしているか。
- 課程修了時に求められる学習成果の測定・評価結果や授業内外における学生の学習状況、資格試験の取得状況、進路状況等の情報を活用するなど、適切な情報に基づいているか。
- 外部の視点や学生の意見を取り入れるなど、自己点検・評価の客観性を高めるための工夫を行っているか。
- 自己点検・評価の結果を活用し、教育課程及びその内容、教育方法の改善・向上に取り組んでいるか。

学部の教育プログラム自己点検・FD委員会を中心として、電子情報システム学科内に自己点検評価体制が存在し、点検活動を実施している。具体的には、教育イノベーション推進センターからの依頼によるカリキュラムの整合性整備について、自己点検・評価・改善活動を実施している。また、シラバスチェックによる学科内での教育点検を実施している。

2. 分析を踏まえた長所と問題点

本学科における教育課程の編成・実施方針の最大の特徴は、上記3つの学問分野の教育を単に併置するのみならず、「総合的かつ統合的に学習する」点にある。そして、この教育課程の編成・実施方針の下に、具体的な科目区分、必修・選択の設計、単位数等に展開されている。特に、本学科では、ソフトウェア分野、メディア・ネットワーク分野、ハードウェア分野いずれかに基盤をおいた専門性を学生に身につけさせるとともに、他の2分野についても基礎知識を併せて習得させることを目標としている。このため、2024年度では3分野にとって必須と考えられる、「電気回路」「電気回路演習」(ハードウェア分野)、「情報通信基礎」、「情報理論」(メディア・ネットワーク分野)、「離散数学」、「データ構造とアルゴリズムI」(ソフトウェア分野)、以上6科目を必修科目としている。そして、学科全教員による必修科目「電子情報システム総論」を通して、体系的な学習を指導している。これまでの継続的な改善プロセスを経て、当学科の教育課程が、3つの学問分野の総花的な知識の集まりではなく、互いに関連しあう科目群として編成することができた。

教育のグローバル化への対応として、2013 年度から、英語による科目を開設し、年度ごとに科目の増加、内容の更新を図っている。2024 年度では、Introduction to Embedded Programing (International Training), Embedded Systems, Embedded Control Systems (International Training), Computer Simulation, Programming Language Processor, ICT System Design, Electric Circuits, Introduction to Control Engineering, Basic Control Engineering, Recent Trend on Electronic Systems, Recent Trend on Information Systems, Global PBL, Undergraduate Thesis Research 1, Undergraduate Thesis Research 2の14科目に広がっている。このうち、International Training、Global PBL は、夏・春期の休みに海外で実施されるプログラムである。

国際プログラムの展開は、学部・学科として大きな試みであり、学生は、授業や留学を経て、さらに、総合研究 I,II を Undergraduate Thesis Research 1,2 として、英語でのゼミ、発表、総合研究論文の執筆を行うこととしており、大学・社会で要請されているグローバル技術者としての素養と経験を身につけることを大いに期待している【資料 4-1 科目配当表】。

本学科の卒業生の主要な就職先を見ると、近年、システム・IT 関連の情報産業が大きく、 つづいて、製造業への就職が顕著であることから、教育目標と内容が社会のニーズに沿っ ていることが確認できる【資料 4-2】。

以上のように、3 つの学問分野にかんして総合的統合的に学習することとグローバル教育が組み入れられている点が本学科の長所であるといえる。その一方で、総合研究における成績評価に関して、シラバスに基づいた評価が行われているものの、教員間の評価基準のばらつきを無くすための仕組みは整備されていないことは不十分だった。

3. 改善・発展方策と全体のまとめ

電子情報システム学科では、教育研究上の目的が定められており、そのアタメにふさわしい授業科目を開設し、教育課程を体系的に編成している。これに加えて、学習成果の達成のための適切な授業形態・方法を取っている。今後、総合研究における成績評価に関して、教員間の評価基準のばらつきを無くすための仕組みの検討を行っていく必要があると考える。

4. 根拠資料

- 4-1 2024 年度学修の手引き https://guide.shibaura-it.ac.jp/tebiki2024/systems/
- 4-2 電子情報システム学科 HP https://www.shibaura-it.ac.jp/faculty/systems/eis/
- 4-3 大学 HP 試験・成績 https://www.shibaura-it.ac.jp/campus life/class/test and result.html

評定 A

基本情報一覧

入学試験要項

学部・研究科等の名称	URL・印刷物の名称
工学部	
システム理工学部	https://admissions.shibaura-
デザイン工学部	it.ac.jp/admission/exam/guideline_general.html
建築学部	
大学院 理工学研究科	https://www.shibaura-it.ac.jp/examinee/graduate/guideline.html
備考	

1. 現状分析

評価項目① 学生の受け入れ方針に基づき、学生募集及び入学者選抜の制度や運営体制を適切に整備し、入学者選抜を公平、公正に実施していること。

<評価の視点>

- 学生の受け入れ方針は、少なくとも学位課程ごと(学士課程・修士課程・博士課程・専門職学位課程)に設定しているか。
- 学生の受け入れ方針は、入学前の学習歴、学力水準、能力等の求める学生像や、 入学希望者に求める水準等の判定方法を志願者等に理解しやすく示しているか。
- 学生の受け入れ方針に沿い、適切な体制・仕組みを構築して入学者選抜を公平、 公正に実施しているか。
- 入学者選抜にあたり特別な配慮を必要とする志願者に対応する仕組みを整備しているか。
- すべての志願者に対して分かりやすく情報提供しているか。

学生の受入方針(アドミッションポリシー)は学科ごとに設定されている。電子情報システム学科のアドミッション・ポリシーは、以下の学生像と、入学を希望するものが能力等として身につけておくべきことが明記され、さらにその判定方法を選抜方式ごとに重視する項目も明記している。

入学を求めている人物(学生像)として、以下の4つを挙げている。

- 1) ソフトウェア、メディア・ネットワーク、ハードウェアなどの学問分野に強い興味を持ち、幅広い基礎知識を主体的に学び、専門性を極める積極的かつ自主的学習意欲をもつ学生。
- 2) 情報を収集・分析して、解決すべき問題の発見に優れた能力をもち、問題解決に意欲をもつ学生。

- 3) 基本的な論理的思考力・理解力・表現力を身に着けた学生。
- 4) 高度な技術と見識、高い倫理観を持った職業人として社会に貢献することを目指す 学生。

入学を希望するものが能力として身につけておくべきことが望まれることとして、以下の3つを挙げている。なお、本学科の国際プログラムでは、下記に加え、留学を含む修了 条件を満たすために所定の英語力を備えた学生の入学を求めている。

- ① 高等学校等の課程で学ぶ知識・技能(特に外国語、数学、理科)
- ② 思考力・判断力・表現力等の能力
- ③ 主体性をもって多様な人々と協働して学ぶ能力

また、判定方法について選抜方式ごとに重視する項目とともに示している。具体的には、前期・後期・全学統一日程入試では、①を重視するとともに、記述式試験により②を評価する。大学入学共通テスト利用方式では、多科目の合計点により①の総合的な能力を重視した評価を行う。指定校推薦および併設校推薦では、調査書により①②を評価し、面接により①②③を総合的に評価する。外国人特別入試では、日本留学試験、外部検定試験等により①②③を総合的に評価する。各入試とも合否判定には電子情報システム学科から委員が選出され、全学科から選ばれた委員とともに合否判定会議において合否を判定することとして、透明性・公平性を担保している。

とくに指定校推薦、併設校推薦、外国人特別入試など面接試験が含まれる選抜方式では、 学科内で担当教員を複数人選定し、ルーブリックを定めて、入試において面談等を実施後、 担当教員間の合議によって選抜作業を実施している。また実施前に、合格基準点の見直し を毎年行っている。

特別な配慮を必要とする志願者に対応する仕組みとして、身体に障害などがある受験生の事前相談(受験・修学上の配慮)を受け付けている【資料 5-1】。

入試に関する情報は、すべての志願者に対してわかりやすいように、選抜区分ごとに要項、出題方針、過去問題、過年度入試結果、FAQなどを整理して、大学 HP で公開している。

評価項目② 適切な定員を設定して学生の受け入れを行うとともに、在籍学生数を収容定員に基づき適正に管理していること。

<評価の視点>

• 学士課程全体及び各学部・学科並びに各研究科・専攻の入学者数や在籍学生数を 適正に維持し、大幅な定員超過や定員未充足の場合には対策をとっているか。

学科の入学定員に対する入学者数比率は 2019 年度、2020 年度、2021 年度、2022 年度、2023 年度、2024 年度それぞれで 108%、113%、95%、96%、104%、96%であり、概ね適切に推移している。また、収容定員に対する在籍学生数比率は、同じく 2019 年度から 6 年間で 109%、108%、108%、106%、103%、100%と、概ね適切に推移している【資料 5-2,5-3】。

新規に入学してくる学生の数が過剰であった年度に対しては、次年度の入試における合 否判定会議において合格ラインをやや高めに設定することで収容定員に対する在籍学生 数比を平均して105%程度に保つよう配慮している。

評価項目③ 学生の受け入れに関わる状況を定期的に点検・評価し、改善・向上に向 けて取り組んでいること。

<評価の視点>

- 学生の受け入れに関わる事項を定期的に点検・評価し、当該事項における現状や成果が上がっている取り組み及び課題を適切に把握しているか。
- 点検・評価の結果を活用して、学生の受け入れに関わる事項の改善・向上に取り組み、効果的な取り組みへとつなげているか。

学生募集および入学者選抜の適切性については、その方法や人数などについて入試委員を中心に毎年学科会議等において討議し、前年度の入学者選抜方式が適切であったかどうか、改善すべき点がなかったかどうかを確認して、翌年度の入試に反映させている。

指定校推薦に関し、人数や方法、あるいは選抜すべき学生像について学科会議等において入試委員を中心に議論を行って決定している。指定校推薦入試実施後、入試担当の教員から学科会議において結果報告を依頼し、それに基づいた議論の結果、得られた改善点などを翌年度の入試に反映させている。また、入試方法別の成績実態調査は、たとえば学内推薦によって入学した学生については継続的に実施している。

2. 分析を踏まえた長所と問題点

本学科への入学希望は堅調であったことから、このニーズに応えるため、2017 年度より、学科定員を 100 名から 115 名に拡大した。その後も直近の一般入学者選抜では 2022 年度 2,502 名、2023 年度 2,055 名、2024 年度 1,975 名と定員に対して十分な受験者数で推移している。また、学部・学科の国際プログラムにより、留学制度があることを考慮して入学した学生もふえてきており、電子情報システム学科では、2024 年度の新入生の国際プログラム配属学生数を目標の学科定員 10%である 15 名に対して 13 名と定員をほぼ満たしている。

入試において、収容定員と在籍学生数が過不足なく一致するよう、入学者選抜のやり方を継続的に改善してゆく必要がある。

国際プログラムは、入学後にプログラム選択の募集を行う。2024 年度は、面接ののち、13名の学生が国際プログラムに配属された。2024 年度現在、1年次13名、2年次6名、3年次5名、4年次4名が在籍している【資料5-4】。今後、国際プログラム希望者については、安定的な受け入れができるよう、よりきめ細かな対応をしていく。

3. 改善・発展方策と全体のまとめ

電子情報システム学科では、ここ 10 数年の間に学科の定員を 2 回変更したこともあり、とくに変更直後において在籍学生が増加する傾向がある。しかし、複数年の平均という観点からは、入学定員と在籍学生の比率は、概ね 110%以内を保ち、比較的良好であるといえる。国際プログラムの設置は、新たな試みであったが、それを目的として入学してくる

学生もおり、少しずつ安定化してきている。今後はオープンキャンパス等の広報, HP やパンフレットの配布を通した周知活動をさらに推進する。

4. 根拠資料

5-1 「一般入学試験要項」(芝浦工業大学 HP)
https://admissions.shibaura-it.ac.jp/admission/index.html 他
5-2 「学生数」(芝浦工業大学 HP)
https://www.shibaura-it.ac.jp/about/info/student_number/
5-3 「2023 年度大学基礎データ」(芝浦工業大学 HP)
5-4 2024 年度第 2 回電子情報システム学科会議資料 2

評定 A

基本情報一覧

大学として求める教員像を示した資料・教員組織の編制方針

資料名称	URL・印刷物の名称
大学として求める教員像および 教員組織の編成方針	https://www.shibaura- it.ac.jp/about/summary/various_policies.html
備考	

設置基準上必要専任教員・基幹教員数の充足

1. 現状分析

評価項目① 教員組織の編制に関する方針に基づき、教育研究活動を安定的にかつ十 全に展開できる教員組織を編制し、学習成果の達成につながる教育の実 現や大学として目指す研究上の成果につなげていること。

<評価の視点>

- 大学として求める教員像や教員組織の編制方針に基づき、教員組織を編制しているか。
- 具体的な例
- 教員が担う責任の明確性。
- 法令で必要とされる数の充足。
- 科目適合性を含め、学習成果の達成につながる教育や研究等の実施に適った教 員構成。
- 各教員の担当授業科目、担当授業時間の適切な把握・管理。
- 複数学部等の基幹教員を兼ねる者について、業務状況や教育効果の面での適切 性。
- クロスアポイントメントなどによって、他大学又は企業等の人材を教員として任用する場合は、教員の業務範囲を明確に定め、また、業務状況を適切に把握しているか。
- 教員は職員と役割分担し、それぞれの責任を明確にしながら協働・連携することで、組織的かつ効果的な教育研究活動を実現しているか。
- 授業において指導補助者に補助又は授業の一部を担当させる場合、あらかじめ責任関係や役割を規程等に定め、明確な指導計画のもとで適任者にそれを行わせているか。

電子情報システム学科では、大学として求める教員像や教員組織の編制方針に基づき、学科会議や教授懇談会の議題として、教員構成方針と教員に求める能力・資質を明確化し、これに沿って、各専門領域における教育・研究を遂行できる人材を採用している【資料 6-

1】。また、これらの議論に当たっては、専門教育および総合・共通教育のバランス、年齢構成、ダイバシティの確保(女性教員や外国人教員の採用)に配慮している。

教員構成については、本学科の教育理念・教育目標に沿って、本学科がカバーすべき専門領域が明確化されており、専門領域でバランスのとれた教員構成を構築しており、法令で必要とされる教員数が 10 人に対して、2023 年度では 17 人と必要数を充足している。【資料 6-2】。

本学科では、「電子情報システム総論」や実験科目を典型例として、複数の教員が担当する科目が数多く開講され、専門横断的に教員が組織的に連携して学生を指導している(1科目を複数教員で分担する場合と、同一内容の科目を複数教員で併行開講する場合がある)。このような複数教員の担当科目には、すべて代表者となる教員を置いており、最終的な成績評価について責任を持つこととしている。

学科会議や教授懇談会によって議論された組織編成方針に従って、計画的に教員組織の編成を行っている。当学科では、教員採用や組織整備は適切に行われている。例えば、学科定員は2009年度まで18名であったが、学部の方針に従って、2013年度に17名、2014年度に16名と減員を実現した。2019年度は、MOT廃止にともなう教員配置による1名増の17名体制となり、2022年度に、2名退職し、2名専任教員が新規に加わった。現在16名(内女性教員2名、外国人教員2名)となっている。

授業科目と担当教員の適合性に関しては、当該教員の採用過程におけるチェックが適正 に行われることが重要である。本学科では教員採用に際して、学部長、各学科主任、関連 部会主査などからなる委員会を構成し書類審査を行い、書類審査を通過した候補者に対し、 模擬授業を含めた面談を実施することで、当該者の適性を厳重に判定している。

以上の取組みから、学習成果の達成につながる教育の実現がなされていると分析できる。

評価項目② 教員の募集、採用、昇任等を適切に行っていること。

<評価の視点>

- 教員の募集、採用、昇任等に関わる明確な基準及び手続に沿い、公正性に配慮しながら人事を行っているか。
- 年齢構成に著しい偏りが生じないように人事を行っているか。また、性別など教員の多様性に配慮しているか。

本学では、教員の募集・採用・昇格等に関する規定および手続きが諸規程に明記されている【資料 6-3,6-4】。電子情報システム学科では教員の募集・採用・昇格に当たってこれを遵守している。当学科の教員採用は、原則、大学の採用プロセスにのっとって運用されている。最初に、学科において新規教員採用の起案を行い、最終的に教授会の議を経て採用過程が開始される。公募は、研究者人材データベース JREC-IN 等を活用し、全国の研究者に周知している。応募に対し、学部の教員採用方針に従って、学部長、各学科主任、関連部会主査などからなる委員会を構成し書類審査を行う。書類審査を通過した候補者に対し、模擬授業を含めた面談を実施し、委員会において最終候補者を決定する。最終候補者は、学長の承認を経て、全学的組織である人事委員会、教員資格審査会議での審査を経て、その結果が教授会で報告される。2021 年度,2022 年度,2023 年度においては、上記のプロセスを経て、4名の専任教員の採用が決定した。

昇格については、各学科の教授懇話会で議論を行い、業績等を考慮した上で学科会議に 諮り、学部の教員資格審査委員会にて議決する。教授懇話会は、このような人事案件が発生した時に随時開催され、基本的に学科主任が召集する形で運営されている。2021 年度に おいては、専任教員1名の昇格が決定した。

評価項目③ 教育研究活動等の改善・向上、活性化につながる取り組みを組織的かつ 多面的に実施し、教員の資質向上につなげていること。

<評価の視点>

- 教員の教育能力の向上、教育課程や授業方法の開発及び改善につなげる組織的な 取り組みを行い、成果を得ているか。
- 教員の研究活動や社会貢献等の諸活動の活性化や資質向上を図るために、組織的な取り組みを行い、成果を得ているか。
- 大学としての考えに応じて教員の業績を評価する仕組みを導入し、教育活動、研究活動等の活性化を図ることに寄与しているか。
- 教員以外が指導補助者となって教育に関わる場合、必要な研修を行い、授業の運営等が適切になされるよう図っているか。

電子情報システム学科では、教員資質の向上に積極的に取り組んでいる。全教員が大学 主催の FD 研修会に毎年参加している。また、新任教員を必ず、新任教職員研修会および 新任教員研修セミナーに参加させている。

くわえて、複数の教員が担当する科目が数多く開講され、専門横断的に教員が組織的に連携して学生を指導しており、これがファカルティ・ディベロップメントに直結している。例えば、重要な実践教育である実験演習科目は、課題設定について担当者間で日常的に議論が積み重ねる形で、相互研鑽が積み重ねられており、学科のカリキュラム上も特徴のある科目として位置づけられているという成果を得ている。

本学では、教員業績システムが運用されており、各教員の教育・研究活動が教員業績システムを通じて、管理・公表されている【資料 6-5】。2020 年度より、とくに研究に関する業績は researchmap を利用して、公表している。また、年度当初には、教育・研究等業績評価シートの提出し、各教員は前年度の活動を自己評価するとともに、新年度の達成目標を申告した後、これを学部長がチェックし、学部全体の状況については講評をする体制がある。このような各教員の自己評価・点検の仕組みを通じて、改善・向上するための体制が整備されていると分析できる。

評価項目④ 教員組織に関わる事項を定期的に点検・評価し、改善・向上に向けて取り組んでいること。

<評価の視点>

- 教員組織に関わる事項を定期的に点検・評価し、当該事項における現状や成果が 上がっている取り組み及び課題を適切に把握しているか。
- 点検・評価の結果を活用して、教員組織に関わる事項の改善・向上に取り組み、 効果的な取り組みへとつなげているか。

学科会議にて教員組織について議論する機会が存在する。とくに新規教員の採用にあたっては、定年する教員の専門領域を無条件に反復継続するのではなく、学生実験の指導強化のような学科の認識している改善点や年齢構成を考慮することなどを学科会議の議論から方針を定めて、採用を行っている。

2. 分析を踏まえた長所と問題点

教員の組織的な連携体制に関して、重要な実践教育である実験演習科目で、課題設定や成績評価に関して、担当者間で日常的に議論を積み重ねる形で、有機的な連携体制を構築し、これが結果的にファカルティ・ディベロップメントにつながっている点は長所である。

電子情報システム学科では、2017年に国際プログラムを設置した。一般プログラムと国際プログラムを同一教員組織で、運営していくことから、今後、国際プログラムの発展に合わせ、求める教員像および教員組織の編制方針に関する議論を重ねてゆく必要がある。また、対応する技術分野、特に、AI, IoT などの技術の深化、システム開発手法の複雑化に対応でき、社会的価値創造のできるディジタル人材の育成に貢献できる教員組織としていくため、継続的に教員組織について議論する機会を設けていく必要がある。

3. 改善・発展方策と全体のまとめ

電子情報システム学科では、ディプロマ・ポリシーに掲げる目標を達成するために、ソフトウェア系、メディア・ネットワーク系、ハードウェア系分野の専門教員をバランスよく配置する必要がある。このために、本学科では、年齢構成のバランス、学科の特徴である実験科目の担当、国際プログラムの発展等も考慮して、適切な教員組織を維持できるように、定期的な議論の機会を設定していくように努める。

4. 根拠資料

- 6-1 2020 年度第 4 回電子情報システム学科会議議事録および追加資料 1,2
- 6-2 「2023 年度大学基礎データ」(芝浦工業大学 HP)
- 6-3 芝浦工業大学「専任教員人事規程」
- 6-4 芝浦工業大学「専任教員任用手続規程」
- 6-5 芝浦工業大学・教員業績システム:

https://gyoseki.ow.shibaura-it.ac.jp/gyoseki/do/Start

第12章 産学連携活動

1. 現状分析

研究での連携活動に関しては、研究室での教員の個別の活動や学部・総合研究、大学院の修士・博士の研究における、産学連携活動が行われている。2023年度の企業受託の外部資金については電子情報システム学科では10件弱であり、所属教員17名のうち3名が保有している。広く関係する意味で外部資金の保有状況としては、2020、2021、2022、2023年度について、それぞれ9、10、11、9名と約半数の教員がなんらかの外部資金(企業受託、科研費、国プロ、財団助成)を獲得している。

特徴のある事例としては、本学と NEC ネッツエスアイ株式会社との包括連携協定に基づく共同研究と共同講座の実施が挙げられる【資料 12-1】。この包括連携協定は両者が有する技術、人材、施設等を有効活用し、産学協創活動を通じて、両者各々の事業を発展させることを目的としている。同社が経済産業省 令和 4 年度「高等教育機関における共同講座創造支援事業費補助金に係る間接補助事業」に申請・採択され、カーボンニュートラル関連の事業創出を担う人材の育成を目的としたシステム工学とデータサイエンスに関する共同研究を行い、共同講座「カーボンニュートラル時代の事業創造に向けた将来予測」を実施した。共同講座では同社社員 32 名、本学科学部生・大学院生 5 名が受講し、7 日間のプログラムで共に学習を行った。この実践事例は令和 4 年度の補助事業における取組み好事例(採択された 25 件中 4 件が収録)として、令和 4 年度共同講座の普及・促進に向けた事例調査報告書(pp.92-95)にて紹介された【資料 12-2】。

この他、さいたま市内の地域企業の若手技術者を対象として、データサイエンスと DX (デジタルトランスフォーメーション)をテーマとし、電子情報システム学科の研究者(教員および学生)と共同で学習する実践的人材育成プログラムを実施している【資料 12-3】。プログラムには若手技術者が8名、学科の教員2名、本学科学部生・大学院生10名が参加し、半年間で10回程度のスケジュールで学習を行った。

教育においては、とくに学部の共通科目 (システム・情報) におけるシステム工学教育、大学院のクロスイノベーションプロジェクト、クロスカルチャーエンジニアリングプロジェクトをはじめとする多様なグローバル PBL の実施において、企業や地域との連携が増えてきている【資料 12-4】。2024 年度のシステム工学演習 C では 24 の企業・自治体から実践的な課題提供と連携が行われている。

2. 分析を踏まえた長所と問題点

教員の個別の連携の他、学部・大学院のシステム工学教育を中心とした国内外の PBL 活動において、産学連携が進められている点は長所である。その一方で、とくに教育面での連携に際しては、企業の入れ替わりもあることから、安定的な連携のため、包括連携協定の枠組みなどを活用した、長期間の取組みを進めていく必要があるといえる。

3. 改善・発展方策と全体のまとめ

より多くの企業、地域との協力体制を進めていく必要がある。この際、包括連携協定の 枠組みを活用するなど、長期間の取組みによる安定的な連携を実現できるような働きかけ をしていく。 電子情報システム学科では、教員の個別の連携の他、学部・大学院のシステム工学教育を中心とした国内外の PBL 活動において、産学連携が進められている。

4. 根拠資料

- 12-1 NEC ネッツエスアイ株式会社 HP「芝浦工業大学と NEC ネッツエスアイが包 括連携協定を締結」
 - https://www.nesic.co.jp/news/2023/20230912.html
- 12-2 【令和 4 年度】共同講座の普及・促進に向けた事例調査報告書 https://jissui.notion.site/4-b881c91de70349b2acf187b29a4cbad8
- 12-3 芝浦工業大学「令和 5 年度(2023 年度) 「ものづくり人材」育成支援プログラム 参加募集のご案内」
 - $https://www.shibaura-it.ac.jp/headline/detail_event/nid00002515_1.html$
- 12-4 グローバル PBL (大学ホームページ)
 - https://www.shibaura-it.ac.jp/global/dispatch/program/global pbl

第13章 芝浦工大の SDGs への挑戦 "Strategy of SIT to promote SDGs"

1. 現状分析

シラバスにおける授業科目ごとに関連する SDGs のゴールを明示している【資料 13-1】。システム理工学部・大学院システム理工学専攻におけるシステム工学教育において、SDGs を課題とした演習・PBL が行われている。学部横断(電子情報システム学科を含む 5 学科)の2 年生必修科目のシステム工学演習 A では、SDGs のゴール 3,4,7,9,11 のいずれか(あるいは組み合わせ)をテーマとして、それに関連する具体的なシステムの企画提案のプロジェクトを実施している【資料 13-2】。学部横断(電子情報システム学科を含む 5 学科)の1 年生選択科目の創るでは、SDGs ゴールを満たすモノやコトを提案、開発するプロジェクトを実施している【資料 13-3】。

学科教員が中心となって行った取り組みとしては、芝浦工業大学附属高校連携授業 Arts and Tech にて、高校 1 年生を対象に SDGs Scratch Game プロジェクトを実施したことが挙 げられる。SDG のテーマに関するゲームを Scratch で作るというプロジェクトで、SDGs の 開発目標に関する理解を深め、Scratch により簡単なプログラム開発ができ、チーム・プロジェクトによる課題解決ができることを学修目標とするものである。2023 年 11 月 9 日・16 日・30 日の 3 日間にわたって高校 1 年生 59 名を対象として実施された。

2. 分析を踏まえた長所と問題点

学部横断的な SDGs を含む社会的問題解決のための PBL 科目授業により、多様な専門を持つ学生たちをチームとするアクティブラーニングにより、専門に偏らず広く社会の問題を知り、様々な観点からの解決策を議論することは、非常によい経験となっており、長所であるといえる。

3. 改善・発展方策と全体のまとめ

学部の学生にとっては、SDGs に初めて触れる人もおり、まだ、十分にその重要性を理解できていない人もいる。SDGs は社会からの強い要請であること、学生はそれを解決していく一員であることをさらに学生に意識してもらう必要がある。そのために、専門の授業においても、SDGs と関連づけた課題を出すといったことが望まれる。

シラバスのすべての授業で SDGs のゴールとの関連を示し、システム理工学部全体での SDGs のゴールをテーマとした PBL を実施している。

4. 根拠資料

- 13-1 芝浦工業大学シラバス http://syllabus.sic.shibaura-it.ac.jp/
- 13-2 システム工学演習 A ガイダンス資料(2024).
- 13-3 創るガイダンス資料(2024).