2024 年度システム理工学部

数理科学科

自己点検・評価報告書

2025年3月31日

目次

第1章 理念・目的

評定	Z A	
基	本情報一覧4	
1.	現状分析5	
2.	分析を踏まえた長所と問題点6)
3.	改善・発展方策と全体のまとめ6)
4.	根拠資料7	,
第 4 章	章 教育・学習	
評定	E A	
基	本情報一覧8	;
1.	現状分析9	1
2.	分析を踏まえた長所と問題点15)
3.	改善・発展方策と全体のまとめ17	,
4.	根拠資料)
第 5 章	章 学生の受け入れ	
評定	2 A	
基	本情報一覧20)
1.	現状分析20)
2.	分析を踏まえた長所と問題点21	
3.	改善・発展方策と全体のまとめ22)
4.	根拠資料	
笠 6音	章 教員・教員組織	
評定		
	本情報一覧	
1.	現状分析	
2.		
3.	改善・発展方策と全体のまとめ	
	根拠資料	
	章 産学連携活動	
	現状分析	
	分析を踏まえた長所と問題点29	
3.	改善・発展方策と全体のまとめ29	į
4.	根拠資料29)

第 13	章 芝浦工大の SDGs への挑戦 "Strategy of SIT to promote SDGs"	
1.	現状分析	30
2.	分析を踏まえた長所と問題点	30
3.	改善・発展方策と全体のまとめ	30

4. 根拠資料.......30

第1章 理念・目的

評定 A

基本情報一覧

基本資料

文書	URL・印刷物の名称
規程集	https://kitei2.sic.shibaura-it.ac.jp/ (要認証・学内ユーザーのみ)
寄附行為又は定款	https://www.shibaura- it.ac.jp/about/educational_foundation/summary/endowment.html
学則、大学院学則	https://www.shibaura-it.ac.jp/campus_life/class/index.html
履修要項・シラバス	https://www.shibaura-it.ac.jp/campus_life/class/class.html http://syllabus.sic.shibaura-it.ac.jp/
備考	

大学の理念・目的

規程・各種資料名称(条項)	URL・印刷物の名称
「芝浦工業大学学則」第1条	https://www.shibaura-it.ac.jp/campus_life/class/index.html
備考	

※ 関係法令:学校教育法施行規則第172条の2第1項

学部・研究科等の目的

学部・研究科等の名称	規程・各種資料名称(条項)	URL・印刷物の名称
工学部	教育研究上の目的	https://www.shibaura- it.ac.jp/faculty/engineering/#anc4
システム理工学部	教育研究上の目的	https://www.shibaura- it.ac.jp/faculty/systems/#anc4
デザイン工学部	教育研究上の目的	https://www.shibaura- it.ac.jp/faculty/design/#anc4
建築学部	教育研究上の目的	https://www.shibaura- it.ac.jp/faculty/architecture/#anc4
理工学研究科	教育研究上の目的	https://www.shibaura- it.ac.jp/faculty/graduate/#policy
備考		

[※] 関係法令:大学設置基準第2条、専門職大学設置基準第2条、大学院設置基準第1条の2、学校教育法施行規則第172条の2第1項

中・長期計画等

名称	URL・印刷物の名称
Centennial SIT Action	https://www.shibaura-it.ac.jp/about/summary/centennial_sit_action.html
備考	

1. 現状分析

評価項目① 大学の理念・目的を適切に設定すること。また、それを踏まえ、学部及び研究科の目的を適切に設定し、公表していること。

<評価の視点>

- 大学が掲げる理念を踏まえ、教育研究活動等の諸活動を方向付ける大学の目的及び学部・研究科における教育研究上の目的を明らかにしているか。
- 理念・目的を教職員及び学生に周知するとともに、社会に公表しているか。

数理科学科の教育目標は以下の通りである【資料 1-1】。

本学科では、実社会で数理科学的手法を実践することのできる人材を育成します。具体的には、数理科学的なアプローチや理論に通じ、製造業、情報産業をはじめとするさまざまな工学分野で現象の解析やシミュレーションができる技術者や、数理科学的手法を応用し、経済活動や社会現象の解析を通して実社会に貢献できる人材。また、中学、高校の数学教員をはじめ、純粋数学もしくは応用数学の研究に携わり、豊かな人類社会を創造するために活躍できる研究者も養成します。

数理科学科は芝浦工業大学のシステム理工学部に設置された学科であり、他大学の理学部や教育学部に設置された数理系学科とは異なり、数学を基礎には置くが、応用分野にも対応できる人材を育てることを目的としている。これは、本学の建学の精神「社会に学び、社会に貢献する技術者の育成」にも適った目的といえる。本学科は工業大学の中にあって理学寄りの学科として設立され、本学の幅を広げたものともいえる。そのため、数理系技術者だけでなく、数学の研究者や教育者(中学・高等学校の教員を含む)の育成も目的としている。

数理科学科の教育目標は前述の通りであり、これは学科ホームページ上に明記、公表している【資料 1-1】。また、この教育目標に基づいて策定した学科の教育研究上の目的、人材育成方針(ディプロマ・ポリシー)、教育方針(カリキュラム・ポリシー)、入学者受け入れ方針(アドミッション・ポリシー)を大学ホームページにて公表している【資料 1-2】。ディプロマ・ポリシーとカリキュラム・ポリシーについては学修の手引にも記載し、在学生に周知している【資料 1-3】。

評価項目② 大学として中・長期の計画その他の諸施策を策定していること。

<評価の視点>

- 中・長期の計画その他の諸施策は、大学内外の状況を分析するとともに、組織、 財政等の資源の裏付けを伴うなど、理念・目的の達成に向けて、具体的かつ実現 可能な内容であるか。
- 中・長期の計画その他の諸施策の進捗及び達成状況を定期的に検証しているか。

数理科学科は 2009 年度に設立された、本学の中では若い学科の部類に入る。教育・研究の実践をしながら学科教育課程の検証・改善を継続して行い、より良い教育ができるよう努めている。なお、本学では現在、多様化・グローバル化を目指した改革を進めている。

グローバル化に関しては本学の先陣を切って 2017 年度、システム理工学部の電子情報システム学科、機械制御システム学科、生命科学科に国際コース(後に国際プログラムと改称)が設けられた。これらを参考に、数理科学科でも 2019 年度に国際プログラムを開設した【資料 1-4、資料 1-5】。

数理科学科では、学科内にワーキンググループを設けて定期的にカリキュラムの見直しを検討し、学科の教育プログラムの点検・改善を行なっている。また、教育イノベーション推進センターからの mDP に対するカリキュラム整合性チェックを受けて学科内で検討し、改善結果を回答することにより PDCA サイクルを回している【資料 1-6】。

2. 分析を踏まえた長所と問題点

数理科学科は、技術者育成を理念として建学された本学に、数学(理学)を基礎に置いた教育・研究を進める学科として設立された。数理科学科設立に合わせてシステム工学部をシステム理工学部に改称したが、このことにも表れているように、本学科設立により本学の幅がより広がったものと考えている。実際、2024年春の時点で12期生までを卒業させたが、従来本学卒業生の進路としては稀であった保険・金融系企業への就職者および中学・高校教員も一定数輩出している【資料1-7】。

一方で、本学の数理科学科はシステム理工学部内に設置され、システム工学教育を受けること、工学系学科の学生と協調して作業を進める演習があることなどが他大学の数学系 学科にはない特徴となっている。これにより、数学を基礎に置きつつ応用を見据えた、視 野の広い人材の育成を目指している。

学科の基本理念やそれに基づく3ポリシー(ディプロマ・カリキュラム・アドミッション)は短期間で変えていくべきものではないが、大学・学部・学科を取り巻く環境の変化を注視し、これらについても継続的な検証と、必要とあれば修正を図ることも大切である。

システム理工学部では 2017 年度、3 学科に国際コース(後に国際プログラムと改称)を 設置した。これを参考に本学科でも 2019 年度に国際プログラムを開設した。同じく 2019 年度には単位の実質化のため大幅なカリキュラム改変を行った。ディプロマ・カリキュラム・アドミッションポリシーについてもこれらの結果を踏まえて再確認している。

なお、現在芝浦工業大学は、「工学系教育改革に関する大学設置基準等の改正(平成 30 年 4 月 1 日施行)」を受け、課程制への移行の準備に入っている。数理科学科は他学部・学科と緊密に連携しながら課程制実現に向けた検討を行っている。

3. 改善・発展方策と全体のまとめ

数理科学科は「数学の基礎をしっかり学んだ上で」、「応用力を身につけ」、「幅広い分野で活躍できる人材」の育成を学科の特徴としている【資料 1-2】。数学を基礎に置いた理学寄りの学科ということで、工業大学である本学の幅を広げた学科といえる。

本学科の教育研究上の目的は、これに基づく3ポリシーとともに、大学ホームページ・学修の手引・学科パンフレット等で公表、周知している。これらの目的・ポリシーに従って構成した教育課程・教育方法については継続的に検証・改善を行っているが、学科を取り巻く環境を注視し、必要であれば3ポリシー、さらには教育研究上の目的についても検証・改善を行っていく。

なお、本学で進められているグローバル化施策に則りシステム理工学部の3学科に2017年度に開設された国際プログラムを参考として、本学科でも2019年度から国際プログラムを設置している。さらに、本学が課程制へ移行準備しているため、本学科は他学部・学科と緊密に連携しながら課程制実現に向ける検討を行っている。

4. 根拠資料

1-1 数理科学科ホームページ/学科紹介/数理科学科の教育目標

URL: https://www.mathsci.shibaura-it.ac.jp/01.html

1-2 大学ホームページ/学部・大学院/システム理工学部/数理科学科概要 - 教育研究上の目的・理念・ポリシー

URL: https://www.shibaura-it.ac.jp/faculty/systems/mathsci/index.html

1-3 資料 1-3: 学修の手引 (2024 年度システム理工学部) VI 章「科目の配当」 専門科目 (数理科学科)

URL: https://guide.shibaura-it.ac.jp/tebiki2024/systems/

1-4 大学ホームページ/学部・大学院/システム理工学部/国際プログラム/国際プログラム概要

URL: https://www.shibaura-it.ac.jp/faculty/systems/globalprogram/index.html

1-5 数理科学科ホームページ/国際プログラム

URL: https://www.mathsci.shibaura-it.ac.jp/global.html

- 1-6 学科会議議事録(2023年9月)
- 1-7 大学ホームページ/学部・大学院/システム理工学部/数理科学科/進路・就職・資格

URL: https://www.shibaura-it.ac.jp/career_support/data/index.html

評定 A

基本情報一覧

学位授与方針・教育課程の編成実施方針・学生の受け入れ方針

学部・研究科等名称		
工学部	https://www.shibaura-it.ac.jp/faculty/engineering/#anc4	
システム理工学部	https://www.shibaura-it.ac.jp/faculty/systems/#anc4	
デザイン工学部	https://www.shibaura-it.ac.jp/faculty/design/#anc4	
建築学部	https://www.shibaura-it.ac.jp/faculty/architecture/#anc4	
大学院 理工学研究科	https://www.shibaura-it.ac.jp/faculty/graduate/#policy	
備考		

関係法令:学校教育法施行規則第172条の2第1項

学部・研究科等における点検・評価活動の状況

学部・研究科等名称	実施年度・実施体制	点検・評価報告書等
工学部		工学部自己点検・評価報告書、
システム理工学部		システム理工学部自己点検・評価報告書、電子情報システム学科自己点検・評価報告書、機械制御システム学科自己点検・評価報告書、環境システム学科自己点検・評価報告書、生命科学科自己点検・評価報告書、数理科学科自己点検・評価報告書、基礎部会自己点検・評価報告書、基礎部会自己点検・評価報告書、総合部会自己点検・評価報告書、総合部会自己点検・評価報告書、教職課程自己点検・評価報告書
デザイン工学部		デザイン工学部自己点検・評価報告書、教職課程自己点検・評価報告書
建築学部		建築学部自己点検・評価報告書
大学院 理工学研究科		大学院理工学研究科自己点検・ 評価報告書、教職課程自己点検・

学部・研究科等名称	実施年度・実施体制	点検・評価報告書等
		評価報告書
備考		

1. 現状分析

評価項目① 達成すべき学習成果を明確にし、教育・学習の基本的なあり方を示していること。

<評価の視点>

- 学位授与方針において、学生が修得すべき知識、技能、態度等の学習成果を明らかにしているか。また、教育課程の編成・実施方針において、学習成果を達成するために必要な教育課程及び教育・学習の方法を明確にしているか。
- 上記の学習成果は授与する学位にふさわしいか。

数理科学科では、「数学に強く、幅広い応用分野に対応でき自ら考える学生を育てる」ことを教育の基本目標とし、工学分野、情報産業、金融分野に加えて、環境科学や生態学など工学周辺分野や、教育産業へ進出できる学生の教育を目指している。このことは【資料4-1項目9-1-(1)-②,9-1-(2)】 に明記されている。また、この教育目標に沿って本学科の学位授与方針(ディプロマポリシー)をまとめ、大学ホームページおよび学修の手引に明示、学内外に周知している【資料4-3,資料4-12】。

大学ホームページに教育課程の編成・実施方針(カリキュラムポリシー)および学位授与方針(ディプロマポリシー)が明示してある【資料 4-2】。また、学修の手引には、ディプロマ・カリキュラムポリシーに加え、教育目標に基づいた科目配置、特に各分野の専門科目配置、必修・選択科目の区分、必要単位数も明示してある。さらに、これらの科目が本学科の学修・教育到達目標のどの項目に該当するかをカリキュラムマップとしてまとめ、明示している(以上、【資料 4-3 項目 VI】)。なお、専門科目一覧については、学科パンフレット・ホームページ【資料 4-4、資料 4-5】を通して学外にも開示している。

数理科学科ではカリキュラムポリシーに従い、専門科目として代数学・幾何学・解析学の純粋数学分野および応用数理・情報数理・金融工学の応用数学分野が配置され、学生はこれらの学修により数理科学分野全般の深い専門知識を身につける。また、学部共通科目(総合科目)の配置により、幅広い教養を身につけ、学部共通科目(基礎科目,システム・情報科目)の配置により、エンジニアとしての基礎およびシステム工学の理論と手法を身につけ、総合研究への取り組みを通じて総合的な問題解決策を修得することにより、ディプロマ・ポリシーを達成する。以上より、学生が達成すべきこれらの学習成果は、学士(数理科学)の学位を授与するにふさわしいものとなっている。

評価項目② 学習成果の達成につながるよう各学位課程にふさわしい授業科目を開設し、教育課程を体系的に編成していること。

<評価の視点>

• 学習成果の達成につながるよう、教育課程の編成・実施方針に沿って授業科目を

開設し、教育課程を体系的に編成しているか。

- 具体的な例
- 授与する学位と整合し専門分野の学問体系等にも適った授業科目の開講。
- 各授業科目の位置づけ(主要授業科目の類別等)と到達目標の明確化。
- 学習の順次性に配慮した授業科目の年次・学期配当及び学びの過程の可視化。
- 学生の学習時間の考慮とそれを踏まえた授業期間及び単位の設定。

数理科学科はシステム理工学部に設置された学科であり、システム工学部(2009年に現学部名に改称)設立以来 30年以上に亘って洗練させてきた学部の教育課程をベースに、主に専門科目の配置により学科独自の教育課程編成を行っている【資料 4-1 項目 9-4】。すなわち、人文教養・語学・体育系科目などからなる「総合科目」と基礎数学・物理学などからなる「共通科目:基礎科目」、システム工学・情報系科目からなる「共通科目:システム・情報科目」を他の 4 学科と共通とし、その他に学科独自の「専門科目」を配置している【資料 4-1 項目 3,資料 4-3】。

システム理工学部の学修・教育到達目標は以下の通りである【資料 4-2、資料 4-3】。

- 地球的観点から多面的に物事を考える幅広い教養を備え、他分野・異文化と相互 理解・交流し、社会や世界の問題解決に取り組み、高い倫理観を持った理工系人 材として行動できる。
- 科学技術の知識を修得するとともに、これを総合して問題解決するまでの行動計画を推進するためのシステム思考を修得し、問題を発見し、総合的解決策を導き出すことができる。
- 社会の問題解決に必要なシステム工学の理論とその運用能力を備え、人・知識・技術をマネジメントし、関係する人々とのコミュニケーションを図りながらチームで仕事ができる。
- 専門的知識とその運用能力を備え、問題解決に必要な知識・スキルを認識し、不 足分を自己学修し、問題を解決できる。

学生に幅広い教養と他分野・異文化の理解力を修得してもらうために、「総合科目」から20単位以上の修得を課している。「総合科目」にはいわゆる人文教養系の科目(「哲学 I, II」など;人文科学系科目と呼称)のほか、国際的な視野を得ることを意図した外国語科目(英語8単位以上の修得は必須とし、選択科目として英語以外の外国語科目も設置)も含まれる。また、システム思考を身につけるために、エンジニアリテラシー科目(「社会ニーズ調査法」など)や社会科学系科目(「経営戦略論」など)を設けている。さらに、健康を維持して社会に貢献し得る人材を育てるために、保健・体育系科目もこの区分に配置している【資料 4-3】。

システム工学の理論と手法を学ぶため、また、その実践を行ううえで欠かせない情報技術に対する理解を深めるために、「共通科目:システム・情報科目」から 16 単位以上の修得を課している。特に、「システム工学 A,B」、「同演習」、「情報処理 I,II」、「同演習」の 8科目 12単位は必修としている。数理科学科は数学を専門とする学科ではあるが、これらの配置により、学部の理念に沿った、学問体系を横断した総合的問題解決を行える人材の育成に努めている【資料 4-3】。

「共通科目:基礎科目」も学部理念に沿って設置された学部全体の共通科目であり、「総合科目」と同様に幅広い教養を身につけてもらう意図がある。ただし、その中で数学系の科目の位置づけは数理科学科と他学科とでは異なる。数理科学科においては数学系基礎科目も専門科目の一部と考えられ、他学科では選択科目とされているもの(例えば、「微分積分 II」、「線形代数 II」など)も必修科目に指定してある。そのため、「共通科目:基礎科目」で修得を課した 16 単位のうち 7 科目 14 単位は必修となっている【資料 4-3】。

「専門科目」は数理科学科の専門教育の骨格をなす科目である。本学科の理念(教育の基本目標)に沿い、数学の基礎力を身につけてもらうため、代数学・幾何学・解析学の導入にあたる科目を必修科目に指定してある。これらを学んだ後、個々の志望にあわせて専門科目を選択させる。学科専門科目には、より高度な数学理論を学ぶ科目群、科学・工学への応用につながる科目群、システム・情報系の科目群、保険・金融工学に連なる科目群が設定してある。学生にはこのうち必修 18 単位(「総合研究 I, II」計 8 単位を含む)、選択 40 単位の計 58 単位以上の修得を課している(2024 年度入学生の場合)。そのため、いずれか1 つの科目群をメインに選んだとしても、他の科目群からも履修科目を選ぶ必要がある。これにより学生が広い視野をもつことを企図している【資料 4-3】。

なお、システム理工学部では、数理科学科新設(2009 年度)に併せて教職課程の設置申請を行い、認可を受けた。本学科卒業生は、しかるべき手続きを踏み、必要とされる単位を修得することで、中学・高等学校の数学または情報の教員免許が取得できる。そのための科目配置もなされている【資料 4-3】。

数理科学科では「数学に強く、幅広い応用分野に対応でき自ら考える学生を育てる」ことを理念(数理科学科の教育・研究目標)としている【資料 4-1 項目 9-1-(1)-②】。

「数学に強く」なるために、前述の通り純粋数学の柱である代数学・幾何学・解析学のそれぞれ導入にあたる科目(「代数学 I」、「幾何学 I」、「ベクトル解析」、ただし「ベクトル解析」は「共通科目:基礎科目」の区分)を必修科目に指定し、すべての学生が基本的な数学的思考法を修得するよう教育している。さらに高度な数学理論が学べるように、「代数学 II」、「幾何学 II 」 および「複素解析」、あるいは「数理科学特論 A, B, C, D」といった選択科目が用意されている【資料 4-3】。

「幅広い応用分野に対応」できる学生を育てるため、科学・工学への応用につながる科目群(「現象の数理」、「シミュレーション」や「数値解析 I, II」、「制御理論基礎」など)、情報科学関連の科目群(「データ構造とアルゴリズム」、「計算理論基礎」、「Java プログラミング」など)、保険数理・金融工学に連なる科目群(「多変量解析」、「金融・保険数理」、「確率統計学特論」)がそれぞれ用意してある。基本的な数学的思考法を修得したうえで、学生個々が自らの志望に合わせて履修できるよう、これらは2年次以降に選択科目として開講されている【資料 4-3】。

「自ら考える力」を身につけてもらうため、「基礎数理セミナー」、「数理科学セミナー」といった、少人数クラスに分かれての講義・演習を行う科目も必修科目として配置してある。「基礎数理セミナー」は1年次前期開講の、いわゆる導入ゼミである。学生はいずれかの研究室に配属されて各教員から直接指導を受け、基本的な論証法や文献調査・報告書作成法などのリテラシーを学ぶ。高校数学から大学(現代)数学への橋渡しの意味も持つ科目であり、研究室に配属されることで、あわせて研究の最先端を垣間見る機会ともしている。一方、「数理科学セミナー」は3年次後期開講の、いわゆる卒論プレゼミである。やは

り学生はいずれかの研究室に配属されるが、ここでは各研究室における卒業研究(4 年次開講の「総合研究 I, II」)を進めるのに必要な、より専門的な指導を受けることになる。そのため、各学生には原則として同じ研究室で「総合研究 I, II」に着手するよう指導する。この「総合研究 I, II」は、最終学年に必修科目として配置してある。この科目では、各学生は配属研究室の教員の指導の下、それぞれのテーマに沿った研究を進め、最後にその成果発表を行う。これにより、自ら問題解決の道筋をつけ、それを実践し、成果を発表する力を身につけてもらう【資料 4-3,資料 4-6】。

なお、これは教育課程外ではあるが、例年入学直後の4月上旬に学科主催の新入生オリエンテーションを実施している。新入生を各教員に割り振り、学生数人からなるチームがそれぞれに与えられたテーマに沿って1日かけて調査・研究を行い、その成果を発表する【資料4-7】。これにより、教員と学生あるいは学生間の親睦を深めてもらうとともに、(近・現代)数学の面白さ・楽しさを味わって今後の勉学のモチベーションとなるようにしている。

学生の適切な学習時間の確保に関しては、2012 年度入学生から履修科目登録単位数の上限設定が行われている【資料 4-3】。

評価項目③ 課程修了時に求められる学習成果の達成のために適切な授業形態、方法をとっていること。また、学生が学習を意欲的かつ効果的に進めるための指導や支援を十分に行っていること。

<評価の視点>

- 授業形態、授業方法が学部・研究科の教育研究上の目的や課程修了時に求める学習成果及び教育課程の編成・実施方針に応じたものであり、期待された効果が得られているか。
- ICT を利用した遠隔授業を提供する場合、自らの方針に沿って、適した授業科目に 用いられているか。また、効果的な授業となるような工夫を講じ、期待された効 果が得られているか。
- 授業の目的が効果的に達成できるよう、学生の多様性を踏まえた対応や学生に対する適切な指導等を行い、それによって学生が意欲的かつ効果的に学習できているか。
- 具体的な例
- 学習状況に応じたクラス分けなど、学生の多様性への対応。
- 単位の実質化(単位制度の趣旨に沿った学習内容、学習時間の確保)を図る措置。
- シラバスの作成と活用(学生が授業の内容や目的を理解し、効果的に学習を進めるために十分な内容であるか。)。
- 授業の履修に関する指導、学習の進捗等の状況や学生の学習の理解度・達成度 の確認、授業外学習に資するフィードバック等などの措置。

前述の科目配当・教育体系に沿って教育を行っている。そこで述べた通り、「数学に強い」 学生を育てるため標準的な数学科目を一通り配置してある。これらは主に板書中心の講義 科目である(ただし、「能動的な学修への参加を取り入れた授業が1コマ分以上」として演 習・実習を取り入れている科目も多い)が、そこで学んだことを深く理解し、「自ら考える力」を身につけてもらうために、少人数教育の導入(「基礎数理セミナー」、「数理科学セミナー」)を行っている【資料 4-3、資料 4-8】。

一方、「幅広い応用に対応でき自ら考える」学生を育てるため応用数理系科目の設置とシステム・情報科目の必修化を行っている。これらも講義科目については座学が中心となるが、「数値解析 I,II」や「シミュレーション」、「制御理論基礎」などでは板書による講義に加え、PC 教室における実習の機会も設け、科学・工学・社会に由来する具体的な諸問題を数理科学的アプローチにより解決する能力の基礎が身につくようにしている。また、基礎的なフログラミング能力修得のため「情報処理演習 II」(共通科目・必修)で C 言語の実習を行っているが、より高度なプログラミング技術を学びたい学生のために「Java プログラミング」、「記号処理」(学科専門科目・選択)において C 実習も含めた教育を行っている【資料 C 4-3、資料 C 4-8】。

学部の理念を体現する科目として、1年次前期には学部共通科目(システム・情報)「創る」がある。この科目を受講することで自由な発想と想像/創造力が涵養される。さらに、2年次には学部共通科目「システム工学演習 A, B」が必修科目として配置されており、これらを受講することでシステム的な思考法やプロジェクトマネジメントの基礎的な技法が身に付く。また、これらの科目は学科混成のチームで作業にあたる形にて実施されるため、専門の異なる者が集まって遂行するプロジェクトについて、その進め方を学べることに加え、将来自分がどのような立場でプロジェクトに参画すべきかについて考える良い機会にもなっている【資料 4-3】。

学生個々の志望にあった適切な履修計画に関して、本学ではすべての授業科目についてシラバスを作成し、ウェブページで公開している。シラバスは「授業の概要」、「達成目標」、「授業計画(予習内容を含む)」、「評価方法と基準」など内容も充実している。また、本学科の学修・教育到達目標を達成するための授業科目の流れ(カリキュラムマップ)も公開し、個々のシラバスと合わせて学生が履修計画を立てるうえで役立たせている【資料 4-9】。個々の授業内容については、シラバスの「授業計画」で予習内容も含めて14回分が具体的に明示されている。授業方法については、同じく「授業の概要」でその概略が明示されている。授業展開はこのシラバスに基づいて行われるので、学生には履修にあたってこれらを熟読するよう求めている【資料 4-8】。

本学では、多角的に学生の学習の理解度・達成度の確認をするために、期末試験以外にも小テストやレポートを課している。小テストやレポートの結果を学生にフィードバックすることで学習内容の理解を深めるとともに学習意欲の向上を企図している。

2019 年末から現在も進行中の新型コロナウイルス感染拡大に対して対応策を講じている。大学全体での授業ガイドラインに沿って、本学科では対面授業を基本として、遠隔授業、オンデマンド配信や混合したハイブリッド授業を実施している。遠隔・ハイブリッド授業運営について、全学で行っている FDSD 研究会への参加の他、学科内の議論・情報共有を進めている。数学の講義では黒板を用いることが多いため、黒板教室を用いた授業の配信・収録の仕方について、授業開始前に非常勤講師も含めて実際に教室で確認している。更に、遠隔講義の準備や授業運営、その他授業の遠隔化によって発生した各作業について、メールだけでなく Teams や Google Chat を用いて情報交換・収集を行っている。これは学期中継続的に行い、問題点や対応策について情報や取組みの共有を行っている。なお、コ

ロナ関連で学生の勉学とキャンパスライフに対する支援として、3 年生以下はセミナー形式の講義を中心に教員がメンターとしてかかわり、4 年生以上は研究室単位でのケアを行っている。

評価項目④ 成績評価、単位認定及び学位授与を適切に行っていること。

<評価の視点>

- 成績評価及び単位認定を客観的かつ厳格で、公正、公平に実施しているか。
- 成績評価及び単位認定にかかる基準・手続(学生からの不服申立への対応含む)を学生に明示しているか。
- 既修得単位や実践的な能力を修得している者に対する単位の認定等を適切に行っているか。
- 学位授与における実施手続及び体制が明確であるか。
- 学位授与方針に則して、適切に学位を授与しているか。

成績評価については、大学ホームページで公開されているシラバスに「評価方法と基準」が明示されており、これに基づいて厳格に行われている。また、科目内容に合うよう、期末試験、中間試験、レポートなど様々な評価方法を適用している。これらはすべてシラバスの一部として公開されている【資料 4-8】。また、必修科目「総合研究 I, II」(卒業研究、学部教育の集大成)に対してはルーブリックを作成、これを学生に提示している。7月と2月に実施される総合研究 I 発表会と総合研究 II 発表会ではルーブリックに基づき、教員あるいは学生相互による評価を行い、これを成績評価に取り入れている【資料 4-6】。

本学以外の「他大学等の教育機関」で単位を修得した場合、それが教育上必要と認められた時には、本学の単位として認定される制度として学外単位等認定制度がある。この制度では本学在学中に他大学等の教育機関で取得した単位、ならびに他学部・他学科履修で取得した単位を合わせて、30単位まで認定可能としている。また、本学入学前に取得した単位(本学併設校出身者が先取り授業で取得した単位を含む)もこの制度により本学の単位として認定を受けることができる。この場合、上記30単位に加えて別に30単位を上限として認定する。ただし、学士入学、編入学、転部・転科入学をした学生についてはこの制度は適用されない【資料4-3】。

総合研究着手条件確認や卒業判定自体は厳格に規定された卒業要件に基づき、学科会議を通して行っている【資料 4-3】。「総合研究 I, II」の単位および学位については、総合研究 I 発表会と総合研究 II 発表会での発表を複数教員で審査し、各指導教員の報告および研究報告書(総合研究論文)の確認を行ったうえで、総合研究のルーブリックを踏まえて判定し【資料 4-6】、最終的には学科会議にて認定している。

評価項目⑤ 学位授与方針に明示した学生の学習成果を適切に把握及び評価していること。

<評価の視点>

- 学習成果を把握・評価する目的や指標、方法等について考えを明確にしているか。
- 学習成果を把握・評価する指標や方法は、学位授与方針に定めた学習成果に照ら して適切なものか。

• 指標や方法を適切に用いて学習成果を把握・評価し、大学として設定する目的に応じた活用を図っているか。

学生の学修成果はすべての授業に対して設けられる自己評価授業アンケートを通じて確認している。また、単位認定と成績評価はシラバスに記載された方法に沿って行っている。一方、各学年に少人数教育の科目(1年次には基礎数理セミナー、3年次には数理科学セミナー)が設けてあり、これらを通して学生の学修成果をより詳細に検証している。学修成果の全体状況を把握するため、年度末に取得単位数別人数(卒業要件内)、入学形態別成績/取得単位数平均、必修科目未修得科目数別人数を集計する等して対策を講じている【資料 4-9】。

数理科学科は2013年春に最初の卒業生を送り出し、2024年春までに12期を卒業させている。卒業に至る在学期間中の学術活動、卒業後の進路(就職や大学院への進学)については今後も追跡調査し、定量的に点検・評価していく。これらの情報は、学科パンフレット、大学ホームページ等で公開している【資料4-10】。

評価項目⑥ 教育課程及びその内容、教育方法について定期的に点検・評価し、改善・ 向上に向けて取り組んでいること。

<評価の視点>

- 教育課程及びその内容、教育方法に関する自己点検・評価の基準、体制、方法、プロセス、周期等を明確にしているか。
- 課程修了時に求められる学習成果の測定・評価結果や授業内外における学生の学習状況、資格試験の取得状況、進路状況等の情報を活用するなど、適切な情報に基づいているか。
- 外部の視点や学生の意見を取り入れるなど、自己点検・評価の客観性を高めるための工夫を行っているか。
- 自己点検・評価の結果を活用し、教育課程及びその内容、教育方法の改善・向上に取り組んでいるか。

毎月1回のペースで開かれる学科会議では履修指導学年担当や授業担当者からの報告という項目が設けられており教育内容・方法の改善に向けた議論がなされている【資料 4-9】。大学全体で進めている単位の実質化に向けた取り組みとして、2019 年度にはカリキュラムの大幅な変更を行った。さらに同年度の国際プログラム開設に合わせて国際 PBL のための科目「国際数理科学実習 I, II」や英語で開講する専門科目の新設を行なってきている【資料 4-3】。

2. 分析を踏まえた長所と問題点

数理科学科も他の学科と同様に、教育目標とそれに基づくディプロマ・カリキュラムポリシーを大学ホームページ、学修の手引などにより明示・公開している。これらの社会への周知、特に高等学校への周知が効果を発揮し、本学科の志願者数は概ね好調を維持している。在学生に対しては、学修・教育到達目標を達成するための授業科目の流れ(カリキュラムマップ)を作成し、これを学修の手引に載せることで履修モデルとの関連を明確にしている【資料 4-3】。また、「総合研究 I, II」(卒業研究)の審査指針(ルーブリック)の

策定を行うことで卒業までに修得すべき事項・レベルを周知している【資料 4-6】。これらについては、定期的な学科会議における教員間の意見交換により再確認・改善を図っている。

数理科学科の教育課程はカリキュラムポリシーに従って構成されているが、数学をベースとする学科であることから、学部共通科目に配置された数学系共通科目も学科専門科目に準ずるものと考え、その多くを必修科目に指定している。一方、本学科はシステム理工学部に設置された学科であるので、本学部の他の4学科と同様にシステム工学系の科目も配置(根幹となる科目は必修指定)している。システム工学思考を学ぶことは、学生が卒業後に数学を工学・情報・金融系等に応用する際に有用である。また、中学・高校の教員を志望する学生もいるが、彼らにとっても授業の組み立て、学校行事進行の際などにシステム工学の技法が役に立つものと考えている。なお、システム工学系の演習科目では学科混成のチームを組んで作業にあたっており(プロジェクトベースドラーニング)、専門の異なる者が協調して一つの仕事をこなす能力を身につける良い機会ともなっている。

数学を学び、深い理解を得るためには、学生自身が手を動かし、また、個々の事項に対して時間をかけて深く考える姿勢が大切である。そのため、数理科学科では少人数教育(セミナー科目)の導入を行っている。特に、1年次前期に開講している「基礎数理セミナー」では、各教員に学生数名ずつを割り当てて輪講や演習・実習をさせることで、大学で数学を学ぶための基本姿勢を身につけるよう指導している。また、3年次後期開講の「数理科学セミナー」でも同様に学生数名ずつが研究室配属されるが、ここでは各担当教員の専門につながる基礎的な内容を学び、4年次の「総合研究 I, II」(卒業研究)につなげている。いずれの科目も各研究室に配属して行われる少人数教育であり、学生間の親交が深まるだけでなく、教員からも個々の学生が「見える」状況が作られている。これにより、欠席しがちな学生や授業についていけない学生のケアが比較的細かくできている。

数理科学の様々な分野で研究意欲のある学生に対して話題を提供するため、本学科は学内外の研究者を招き、研究について語って頂く数理談話会を開催している【資料 4-13】。

2009 年度に設立された数理科学科も第 12 期生まで無事卒業させることができた。本学ではそう多くはなかった、中学・高校教員になった者も毎年複数名おり、卒業生は皆、社会で活躍している様子である。教員試験の合格者や、本学あるいは他大学大学院の入学試験合格者も一定数いること【資料 4-10】から、適切な学力・能力を身につけて卒業したといえる。例として、数理科学科を卒業して本学大学院へ進学した尾崎研究室の学生は 2021年 11月の国際会議で Presentation Award (発表賞)を受賞している【資料 4-14】。

本学科の国際化は、大学全体の取り組みに伴って進められている。2019 年度に数理科学科の国際プログラムを開設し、プログラムの学生は英語による授業を受講し海外留学の活動を行っている。合わせて国際 PBL のための科目「国際数理科学実習 I, II」も 2019 年度より新設し、これまでドイツハンブルグ大学、米国グアム大学、インドネシアスラバヤエ科大学と共同でいくつかの国際 PBL を参画・主催してきた【資料 4-15】。特に 2021 年 8 月のオンライン国際 PBL にスラバヤ工科大学と本学科の学生以外に津田塾大学と中央大学の学生も参加し、大変有益な学修プロジェクトになっている【資料 4-16】。2022 年 11 月には、コロナ感染対策を十分に講じたうえで、インドネシアスラバヤ工科大学およびマレーシアマラ工科大学と共同で対面の国際 PBL を実施した【資料 4-17】。

学部・学科の教育目標とそれに基づく学位授与方針(ディプロマポリシー)、教育課程の編成・実施方針(カリキュラムポリシー)は策定済みであるが、社会状況の変化に応じて見直し・改善を継続して行っていく必要がある。特に 2019 年度に開設した国際プログラムの実施状況を踏まえて、各方針の見直し・改善が必要となることも考えられる。なお、これらのポリシーは大学ホームページ、学修の手引に明記・公表しているが、必ずしも学生がこれらをよく認識しているとは限らない。学生への周知を含め、効果的な公表方法についても継続的に検討していく必要がある。

学科の教育課程(カリキュラム)はカリキュラムポリシーに従って構成してある。カリキュラムポリシーを見直した際はもちろん、そうでなくても学科を取り巻く環境(社会のニーズや入学生の質など)の変化によりカリキュラムの調整が必要となる。特に 2019 年度に開設した国際プログラムの実施状況による見直し・改善が必要となると考えられる。さらに、数理科学科は学部の数学基礎教育も担っているので、中学・高校の教育課程の変化にも注意を払う必要がある。これらを踏まえて今後とも定期的にカリキュラムの点検・改善を行っていく。その際、カリキュラム変更の実施等による教育効果の調査および卒業生の進路等の情報収集を行い、さらなるカリキュラムの改善に活かしていく【資料 4-10,資料 4-11】。

成績評価にあたっては、適切な評価基準を設定することが大切である。現状では、科目間で成績の分布(平均点、分散)にばらつきがある。科目の性格、履修者の偏りなどもあるので一律に均等化することは必ずしも正当とはいえないが、なんらかの標準化を検討すべきである。ただし、成績評価の基準をあまりに具体化・厳密化してしまうと、学生の多様な成長を阻む結果にもなりかねないので、適切な運用を目指す必要がある。例えば、現在は「総合研究 I, II」(卒業研究)の評価にルーブリックを用いているが、これにこだわり過ぎると学生の多様な成果を適正に評価できなくなる恐れがある。ルーブリックの内容、活用方法については継続的な検証が必要である。また、今後も一定の割合で遠隔・ハイブリッド授業が存続すると考えられるため、多元的評価についての検討も含め議論する必要がある。

単位の実質化に向けての取り組みとして 2019 年度のカリキュラム変更において開講科目数の削減を実施した。これには基礎科目に付随していた演習科目や「数理科学演習 I, II」の廃止が含まれる。数学を学び、深い理解を得るためには、学生自身が手を動かし、また、個々の事項に対して時間をかけて深く考える姿勢が大切である。これまでは演習科目を通してこの姿勢を養ってきたが、開講科目数の削減に伴いこれまで以上に工夫が必要になる。

3. 改善・発展方策と全体のまとめ

数理科学科では、「数学に強く、幅広い応用分野に対応でき自ら考える学生を育てる」こととした基本目標に則して、学位授与方針、教育課程の編成・実施方針を定め、大学ホームページや学修の手引、パンフレット等で公表している。学生にはこれらを、入学時および各学年の年度始めに行われるガイダンスにおいて周知しているが、さらによく認識させ、学生個々の修学計画に反映させるよう指導していく必要がある。

数理科学科は数学をベースとした学科であるので、学部共通科目に配置された数学系科目も含めて、より深い数学を学べるようカリキュラム構成を行っている。近・現代数学の諸概念を深く学ぶには、学生個々が自らの手を動かし、また、十分時間をかけた深い思索

が必要である。そのため、少人数教育(セミナー科目)を導入している。なお、本学の数理科学科では、他大学の理学部あるいは教育学部の数学系学科とは異なり、学部共通科目であるシステム工学系の科目も履修を課している。これらの科目を通して、数学の実社会への応用にも目を配り、また、専門の異なる者とも協調して一つのプロジェクトに携われる素養を身につけさせるカリキュラムとなっている。

学生の適切な学修時間の確保のため、履修科目登録単位数の上限設定を行っている。そのうえで、学生が適切な履修計画を立てられるよう、シラバスおよびカリキュラムマップの公開、履修モデルの提示を行い、各年度始めの学科ガイダンス等における履修指導学年担当による指導を行っている。

成績評価については、各科目とも評価基準がシラバスに明記されている。特に「総合研究 I, II」(卒業研究)についてはルーブリックを導入、学部・学科の教育目標に則した学修目標を明示している。一般科目の成績評価は各担当教員が責任をもって行っているが、「総合研究 I, II」の成績評価と学位授与については、各指導教員の報告および研究報告書(総合研究論文)の確認を行ったうえで上記ルーブリックを踏まえて判定し、最終的には学科会議に諮って認定を行っている。

学生の学修成果はすべての授業に対して設けられる自己評価授業アンケートを通じて確認している。また、学生自身の自己評価・振り返りとして、e-ポートフォリオシステムも活用している【資料 4-18】。2009 年に設立された数理科学科も 2024 年 3 月で無事 12 期生までを卒業させることができた。進路情報については就職担当教員(原則として履修指導 3,4 年担当)とキャリアサポート課がまとめ、その概略は大学ホームページ等に公開している。また、卒業時に学生による教育評価アンケートを行っている。これらの情報を踏まえ、学科のディプロマ・カリキュラムポリシーや教育課程とその実施方法について、学科として継続的な検証・改善を行っている。その結果として 2019 年度には単位の実質化に向けての取り組みとして大幅なカリキュラム変更・開講科目数の削減を行った。さらに同年度の国際プログラム開設に合わせて国際 PBL のための科目「国際数理科学実習 I,II」や英語で開講する専門科目の新設を行なってきている【資料 4-3】。

4. 根拠資料

- 4-1 芝浦工業大学システム工学部数理科学科設置届出書
- 4-2 大学ホームページ/学部・大学院/システム理工学部/数理科学科/数理科学科概要 教育研究上の目的・理念・ポリシー

URL: https://www.shibaura-it.ac.jp/faculty/systems/mathsci/index.html

4-3 学修の手引(2024年度システム理工学部)

URL: https://guide.shibaura-it.ac.jp/tebiki2024/systems/

4-4 数理科学科デジタルパンフレット

URL: https://www.shibaura-it.ac.jp/faculty/systems/mathsci/index.html

URL: https://www.mathsci.shibaura-it.ac.jp/webp/book/html5.html

4-5 数理科学科ホームページ/カリキュラム

URL: https://www.mathsci.shibaura-it.ac.jp/03.html

- 4-6 数理科学科専門科目「総合研究」の学修・教育到達目標、ルーブリック
- **4-7** 2024 年度新入生オリエンテーション概要

4-8 芝浦工業大学シラバス検索システム URL: http://syllabus.sic.shibaura-it.ac.jp/ 4-9 学科会議議事録(2024年2月) 大学ホームページ/学生生活・キャリア支援/データ/2022 年度卒業生就職・進路 4-10 データ URL: https://www.shibaura-it.ac.jp/career_support/data/index.html 卒業時アンケート(学生による教育評価アンケート) 4-11 URL https://docs.google.com/spreadsheets/d/e/2PACX-1vRhpxJsBVM8P8OHNoGmHmSL7NXwl0nq5AtaK PBn4WHyvfX0nFLsX6We n9sY 5jhCXeCss0F9RCtP3/pubhtml 大学ホームページ/学部・大学院/システム理工学部 ― 学修・教育到達目標 4-12 URL: https://www.shibaura-it.ac.jp/faculty/systems/index.html 4-13 数理科学科「談話会のご案内」 URL: https://www.mathsci.shibaura-it.ac.jp/04.html 内野佑基さんが The 40th JSST Annual International Conference on Simulation 4-14 Technology にて Student Presentation Award を受賞 URL: https://www.shibaura-it.ac.jp/news/nid00001951.html 4-15 資料 4-15: (1) Global Project Based Learning (GPBL) 2019 at ITS Indonesia URL: https://youtu.be/D5rk7n7onUE (2) Global Project Based Learning (GPBL) 2019 at SIT Japan URL: https://youtu.be/0jrY0zQksZg (3) Global Project Based Learning (GPBL) Mathematics 2020 (Online) URL: https://youtu.be/CiTouo50u-8 4-16 2021 年 8 月数理科学国際 PBL チラシ 2022 年 11 月数理科学国際 PBL チラシ 4-17 大学ホームページ/芝浦工業大学とは/大学の取り組み/教育イノベーション推 4-18

4-18 大学ホームページ/芝浦工業大学とは/大学の取り組み/教育イノベーション推 進センター/カリキュラムマネジメント部門

URL: https://www.shibaura-it.ac.jp/about/education/organization/cm.html

評定 A

基本情報一覧

入学試験要項

学部・研究科等の名称	URL・印刷物の名称
工学部	
システム理工学部	https://admissions.shibaura-
デザイン工学部	it.ac.jp/admission/exam/guideline_general.html
建築学部	
大学院 理工学研究科	https://www.shibaura-it.ac.jp/examinee/graduate/guideline.html
備考	

1. 現状分析

評価項目① 学生の受け入れ方針に基づき、学生募集及び入学者選抜の制度や運営体制を適切に整備し、入学者選抜を公平、公正に実施していること。

<評価の視点>

- 学生の受け入れ方針は、少なくとも学位課程ごと(学士課程・修士課程・博士課程・専門職学位課程)に設定しているか。
- 学生の受け入れ方針は、入学前の学習歴、学力水準、能力等の求める学生像や、 入学希望者に求める水準等の判定方法を志願者等に理解しやすく示しているか。
- 学生の受け入れ方針に沿い、適切な体制・仕組みを構築して入学者選抜を公平、 公正に実施しているか。
- 入学者選抜にあたり特別な配慮を必要とする志願者に対応する仕組みを整備しているか。
- すべての志願者に対して分かりやすく情報提供しているか。

大学ホームページに数理科学科のアドミッションポリシーを明示している【資料 5-1】。このアドミッションポリシーには「数理科学に関する強い意欲と情熱を持って積極的に勉学に取り組む人」を求めていることを明記し、卒業後に想定される進路を例示することで、本学科が求める学生像の周知に努めている。さらに、本学科を希望する学生が入学する前に身につけていることが望まれる能力、知識についても明示している。その水準に関しては、入試科目・出題範囲を示す形で入試要項に記載し、受験生に周知している【資料 5-2,5-3】。

数学的な考え方の重要性を理解し、強い意欲と情熱をもつ学生を広く受け入れたいとする学科の方針により、2024年度入試においては、推薦・一般前期(英語資格・検定試験利用方式を含む)・一般後期・全学統一・総合型選抜・共通テスト利用と、本学に用意された制度を幅広く利用して学生募集・選抜を行っている【資料 5-3】。特に意欲と情熱をもった

学生を受け入れるため、推薦入試のほか、本学科では総合型選抜による募集も行っている。ただし、数学的な考え方を重視している本学科への適性を測るため、一般前期・一般後期・全学統一試験では数学の得点を2倍に重み付けし、総合型選抜では数理科学に関連するプレゼンテーションに加え、数学の基礎学力および発想力と論理的思考力の確認のための口頭試問を課す、といった方法をとっている【資料5-3】。なお、各入試方式とも合否判定は各学科代表2~3名を選出した学部全体の合否判定会議で行われている。合否の判定基準・結果の情報は学部全体で共有されており、入学者選抜の透明性が保たれている。

障がいをもった受験生への受験上の配慮についても大学ホームページ・入試要項に示してある【資料 5-3, 5-4】。また、障がいをもった学生の受け入れに関しては、校舎のバリアフリー化などハード面の整備を進め、教職員・学生のノーマライゼーションへの意識向上を図るといった活動を進めている。

評価項目② 適切な定員を設定して学生の受け入れを行うとともに、在籍学生数を収容定員に基づき適正に管理していること。

<評価の視点>

• 学士課程全体及び各学部・学科並びに各研究科・専攻の入学者数や在籍学生数を 適正に維持し、大幅な定員超過や定員未充足の場合には対策をとっているか。

在籍学生数および構成に関して、数理科学科の収容定員は300人であるが、2024年5月 現在の在籍者数は309人、定員に対する比率は103%であり、適正な水準の範囲内といえる。【資料5-5】。

評価項目③ 学生の受け入れに関わる状況を定期的に点検・評価し、改善・向上に向 けて取り組んでいること。

<評価の視点>

- 学生の受け入れに関わる事項を定期的に点検・評価し、当該事項における現状や成果が上がっている取り組み及び課題を適切に把握しているか。
- 点検・評価の結果を活用して、学生の受け入れに関わる事項の改善・向上に取り組み、効果的な取り組みへとつなげているか。

学科として、入試方法別に学生の成績追跡調査を行っている。これらの情報をもとに選抜方法の見直しを行っている。すなわち、総合型選抜継続の可否、筆記試験の科目数とその重みづけ、推薦入試の基準点や募集人数などである。これらは毎年、学科選出の入試委員を通して学部入試委員会、そして学部選出のアドミッションセンター員および入試課に伝えられ、翌年の入試実施案に反映されている。

2. 分析を踏まえた長所と問題点

オープンキャンパス等の活動を通して、学科の受け入れ方針を含めた学科紹介を行っている。実際、オープンキャンパスでの説明を聞いて受験・入学を決めた、と話す学生もおり、これらの活動が学科の受け入れ方針を周知するのに役立っていると考えられる。また、本学には推薦・一般前期(英語資格・検定試験利用方式を含む)・一般後期・全学統一・総合型選抜・共通テスト利用と多くの入試方法が用意されていて、数理科学科でもこれらの

制度を幅広く利用して多彩な学生の受け入れに努めている。入試に関するデータによると、この3年間の一般前期・英語検定利用・一般後期・全学統一・共通テスト利用の合計で見ると、志願者は1454人、1414人、1458人と推移しており、入学定員に比して概ね好調を維持しているといえる【資料5-6】。学科創設時からのオープンキャンパスや出張講義等によるPR努力が報われたものと思われる。

文部科学省の指摘による入学者定員数の厳格化に従い、2017年度からは入学者実数を学科定員数に極力一致させるよう努めることになった。その実施にあたり、学生定員を実情に合わせることとし、2017年度から数理科学科では1学年70人から75人へと増員した。毎年、各入試方法別の募集人数や推薦入試の基準点等について学科で見直し(検証)を行っていることが、入学者実数の厳格化を含む適切な入学者選抜につながったものと考えている。また、入試方法に関する議論には、入試方法と学生の成績、ひいては学生への指導のあり方について学科内で意識が高まるといった効果もある。

入学にあたり修得しておくべき知識・水準に関して、一般入試受験者に対しては入試科目・出題範囲を通して、推薦入試合格者に対しては入学前教育を通して示しているが、その他にも周知する方法がないか検討する。また、学科の方針としては、これまでの PR 活動は一定の効果があったと考えられるため、今後もオープンキャンパス・高校生向け進路相談イベント・出張講義等を通じて学科 PR により一層努める。それらの機会に、他大学の「数理」と名がある学科とは異なる、芝浦工業大学の中の数理科学科としての特徴を示し、受け入れ方針に適合した受験者の確保につなげていく。現時点では学科として 12 期分の卒業生を送り出したところであり、その主な進路も学科パンフレット等を通して受験生に開示している。この結果が今後の入試志願者数にどのような影響を与えるかを調査・検証する。さらに、入学から卒業までの成績等を分析し、各種入試方式が有効に機能しているかどうかについても継続して検証していく。

3. 改善・発展方策と全体のまとめ

学生の受け入れ方針に関して、学部・学科ともアドミッションポリシーを策定、ホームページ等で公開している。このポリシーに従い、強い意欲と情熱をもつ学生を広く受け入れることを企図して、本学に用意された多様な入試制度を幅広く利用している。特に、総合型選抜による募集や、一般前期試験等において数学の得点を2倍に重みづけするといった点が学科の特色となっている。合否判定会議は学部全体で開催され、入学者選抜は公正かつ適切に行われている。

本学科の学生定員充足率は 309/300=1.03 と適切な範囲にあるといえる。今後も、入試方法別成績追跡調査等を行い、入学者選抜方法についての見直し・改善を進めていく。

4. 根拠資料

5-1 大学ホームページ/学部・大学院/システム理工学部/数理科学科概要 - 教育研究上の目的・理念・ポリシー

URL: https://www.shibaura-it.ac.jp/faculty/systems/mathsci/index.html

5-2 大学ホームページ/入学案内/学部入試/学部入試について

URL: https://www.shibaura-it.ac.jp/examinee/undergraduate/index.html

5-3 芝浦工業大学入試情報サイト

URL: https://admissions.shibaura-it.ac.jp/admission/index.html

5-4 芝浦工業大学入試情報サイト — 受験上および修学上の合理的配慮
URL: https://admissions.shibaura-it.ac.jp/admission/procedures/support.html
5-5 大学ホームページ — 2024 年度学生数
URL: https://www.shibaura-it.ac.jp/about/info/student_number/index.html
5-6 芝浦工業大学入試情報サイト — 過年度入試結果

評定 A

基本情報一覧

大学として求める教員像を示した資料・教員組織の編制方針

資料名称	URL・印刷物の名称
大学として求める教員像および 教員組織の編成方針	https://www.shibaura- it.ac.jp/about/summary/various_policies.html
備考	

設置基準上必要専任教員・基幹教員数の充足

1. 現状分析

評価項目① 教員組織の編制に関する方針に基づき、教育研究活動を安定的にかつ十 全に展開できる教員組織を編制し、学習成果の達成につながる教育の実 現や大学として目指す研究上の成果につなげていること。

<評価の視点>

- 大学として求める教員像や教員組織の編制方針に基づき、教員組織を編制しているか。
- 具体的な例
- 教員が担う責任の明確性。
- 法令で必要とされる数の充足。
- 科目適合性を含め、学習成果の達成につながる教育や研究等の実施に適った教 員構成。
- 各教員の担当授業科目、担当授業時間の適切な把握・管理。
- 複数学部等の基幹教員を兼ねる者について、業務状況や教育効果の面での適切 性。
- クロスアポイントメントなどによって、他大学又は企業等の人材を教員として任用する場合は、教員の業務範囲を明確に定め、また、業務状況を適切に把握しているか。
- 教員は職員と役割分担し、それぞれの責任を明確にしながら協働・連携することで、組織的かつ効果的な教育研究活動を実現しているか。
- 授業において指導補助者に補助又は授業の一部を担当させる場合、あらかじめ責任関係や役割を規程等に定め、明確な指導計画のもとで適任者にそれを行わせているか。

数理科学科の教員組織の編成方針は芝浦工業大学システム工学部数理科学科設置届出 書に明確に記されている【資料 6-1】。教育課程は学科の教育目標に基づいて構成されてお り、その教育課程を遂行するのに必要かつ適切な教員配置を行っている。学科教員の構成と教員個々の研究内容(専門分野)は教員プロフィールに明示されている【資料 6-2】。

数理科学科の教育目標に基づいて教育課程を編成しているが【資料 6-3 カリキュラムポリシー】、さらにそれに基づいて教員組織を整備している【資料 6-2】。授業科目と担当教員の適合性は各教員の採用時点で判断している。

随時行っている教育課程の見直しの際に教員配置の検証を行い、必要に応じて担当科目 の入れ替えを行っている。教育上主要と認められる必修科目等は専任教員を配置している。

評価項目② 教員の募集、採用、昇任等を適切に行っていること。

<評価の視点>

- 教員の募集、採用、昇任等に関わる明確な基準及び手続に沿い、公正性に配慮しながら人事を行っているか。
- 年齢構成に著しい偏りが生じないように人事を行っているか。また、性別など教 員の多様性に配慮しているか。

学科教員の募集・採用・昇格とも、大学全体に定められた規定に従って進めている【資料 6-4、資料 6-5】。

専任教員の採用にあたっては、まず学科において新規教員採用の起案を行い、最終的に教授会の議を経て採用プロセスが開始される。公募に際しては、学内掲示に加えて研究者人材データベース JREC-IN や関連学会の ML 等により広く告知するよう努めている。応募締め切り後は、学部の教員採用方針に従って、学部長、各学科主任、関連部会主査などからなる採用候補者選考委員会を構成し、同委員会にて最初に書類審査を行い、次に書類審査を通過した者に対して模擬授業を含めた面接を実施、この結果を踏まえて候補者を決定する。候補者は学長室での面接の後、全学的組織である人事委員会の議を経て、教員資格審査会議で議決され、その結果が教授会にて報告される。

昇格にあたっては、まず学科教授懇談会で議論を行い、業績等を考慮したうえで学科会議に諮り、学科として推薦するかどうかを決める。その後、学科から起案を行い、学部の教員資格審査委員会にて議決する。教授懇談会は、このような人事案件が発生した時に随時開催され、基本的に学科主任が召集する形で運営されている。いずれも規定に則って適切に行われている。

2024 年度現在、学科教員 13 名のうち、3 名が女性教員、1 名が外国人教員である。年齢構成は 30 代、40 代、50 代、60 代がそれぞれ 3,3,6,1 名(2024 年 8 月時点)となりバランスが取れている。

評価項目③ 教育研究活動等の改善・向上、活性化につながる取り組みを組織的かつ 多面的に実施し、教員の資質向上につなげていること。

<評価の視点>

• 教員の教育能力の向上、教育課程や授業方法の開発及び改善につなげる組織的な 取り組みを行い、成果を得ているか。

- 教員の研究活動や社会貢献等の諸活動の活性化や資質向上を図るために、組織的な取り組みを行い、成果を得ているか。
- 大学としての考えに応じて教員の業績を評価する仕組みを導入し、教育活動、研究活動等の活性化を図ることに寄与しているか。
- 教員以外が指導補助者となって教育に関わる場合、必要な研修を行い、授業の運営等が適切になされるよう図っているか。

教員の資質向上に資する活動に対する学部の取り組みとして、各学期末には各科目とも学生に対して自己評価授業アンケートを実施し、これを担当教員にフィードバックして授業改善の一助としている。さらに、学生からの授業アンケート等に基づき授業が優れている教員を表彰する「ベスト授業賞」(後に「教育賞」に変更された)があり、数理科学科の現所属教員からは榎本裕子教授、清水健一准教授、竹内慎吾教授、田中友佳子准教授がこれまで選ばれた。その他、大学主催のFD研修会や新任教員研修セミナーへの参加等によっても資質向上を目指している。教員に研究話題とモチベーションを提供するため、本学科では学内外の研究者を招き、不定期に数理談話会を開いている【資料 6-9】。研究については学科教員がそれぞれの研究分野で大きく活躍・貢献しており、例えば福田亜希子教授は2021年10月の国際会議でBest Paper Award(最優秀論文賞)を受賞【資料 6-10】、石渡哲哉教授は2023年度日本応用数理学会で論文賞(JJIAM部門)を受賞【資料 6-11】、尾崎克久教授は2023年度日本応用数理学会研究部会連合発表会で優秀講演賞を受賞している【資料 6-12】。

評価項目④ 教員組織に関わる事項を定期的に点検・評価し、改善・向上に向けて取り組んでいること。

<評価の視点>

- 教員組織に関わる事項を定期的に点検・評価し、当該事項における現状や成果が 上がっている取り組み及び課題を適切に把握しているか。
- 点検・評価の結果を活用して、教員組織に関わる事項の改善・向上に取り組み、 効果的な取り組みへとつなげているか。

大学全体の取り組みとして教員の業績評価システムが運用されている【資料 6-6】。各教員は、年度始めに教育・研究・社会貢献の達成目標を申告、年度末にはこれらを自己評価することで、教育研究活動の改善・向上を図っている。

2018 年 10 月には年齢構成を考えて若手教員(助教)を新規採用し、2019 年 4 月には 2 名の教員の昇格(准教授→教授、助教→准教授)を行っている。2020 年 4 月には、欠員となっていた教職担当の教員を迎え、学科教員 13 名体制となった。2022 年 7 月末に教員 1 名が退職したため、退職教員と同じ分野で新任教員 1 名を採用している。2023 年 4 月には 2 名の教員の昇格(准教授→教授、助教→准教授)を行っている。

2. 分析を踏まえた長所と問題点

数理科学科では、完成年度となった 2013 年にカリキュラムの整備変更を行い、併せて授業科目と担当教員の適合性を確認した。これにより、教員構成の再確認と学科教員間の意識の共有が行われた。その後も学科会議においてカリキュラムの見直しとそれに伴う組

織・人事の方向性を随時議論している。その結果、例えば 2015 年度末に定年退職した教員の補充人事においては、退職教員と異なる分野(解析系→代数系)の教員を採用し、それに伴い各教員担当科目の再配置を行った。また、教育課程の見直しを行う際に各教員の担当科目を確認することで、教員間の負担の平準化を図っている。これは教員組織の再整備を考えるうえでの基礎データともなっている。

システム理工学部では共通系教員も各学科に分属し、総合研究(卒論)指導も行っている。ただし数理科学科の場合、教職担当の1名を除く12名は数学を専門としており、共通系教員と学科専門教員の区別は明確でない。そこで、学科全体として持ちコマの1/3程度が数学系科目を主とした学部共通教育となるように担当科目の配置を行っている。

大学全体として行っていることであるが、業績評価システムによる年度ごと達成目標の 自己申告・自己評価や授業アンケートの公開は、各教員が自分の教育研究活動を客観的に 見直し、教育の改善・向上を進めるよい機会になっている。

問題点としては、システム理工学部では 2012 年度には「システム工学教育に関する将来像検討委員会」【資料 6-7】、2013 年度には「学部・学科再編等将来計画検討ワーキンググループ」【資料 6-8】が立ち上がり、教育内容だけではなく教員組織についての検討もなされている。これらを踏まえて、システム理工学部の中の数理科学科としてどのような教員組織が適切であるかをさらに検討していく必要がある。逆に、学科として適切な教員組織を構成していくためには、学科内に留まらず、部会や学部を巻き込んだ形での議論も必要となる。

数理科学科ではカリキュラムポリシーに基づいて教員組織を整備してきた。一方、2019 年度は学科設立 10 周年となり、この間に専任教員の入れ替わりも何件か生じている。学科設立の趣旨を学科教員に明確に認識してもらい、学科教員間の意識の共有を図ったうえで今後とも教員組織を定期的に見直していく必要がある。その際、大学の国際化・多様化を見据えた教員組織としていくことも求められている。ただ、教育環境の変化に合わせて教員自体を入れ替えること(他学科等への異動や、定年退職によらない解雇・新規採用)は現実的ではない。環境変化に対応できるよう、現職教員の資質向上をサポートする体制が必要である。

3. 改善・発展方策と全体のまとめ

数理科学科の教員組織は、学科設置届出書に明記した編成方針に則り、適切に編成している。2019 年度は学科設立 10 周年にあたり、この間に定年退職等に伴う教員の入れ替わりもあったが、学部・学科のカリキュラムポリシーに従い、教育課程遂行に必要な教員組織を保っている。新任教員の採用にあたっては広く公募を行い、学部 5 学科からの各代表を含む採用候補者選考委員会において公正に審査を行っている。学内昇格についても、学部で定めた手続きに従い、適切に進めている。2018 年 10 月には年齢構成を考えて若手教員を新規採用し、2019 年 4 月には 2 名の教員の昇格を行い、2020 年 4 月には欠員となっていた教職担当の教員を迎えた。2022 年 7 月末に教員 1 名が退職したため、公募を行い、新任教員 1 名を採用した。

教員の資質向上については、授業アンケートの活用、各種 FD 研修会等への参加、教員業績システムを用いた PDCA サイクルの実施などを行っている。原則として毎月1回開催

されている学科会議において、随時カリキュラム編成に関する議論や各授業担当者間の情報交換を行い、それらに基づくカリキュラム改革、教員組織の改善を進めている。

4. 根拠資料

- 6-1 芝浦工業大学システム工学部数理科学科設置届出書
- 6-2 教員プロフィール 2024
- 6-3 大学ホームページ/学部・大学院/システム理工学部/数理科学科概要 - 教育研究上の目的・理念・ポリシー

 $URL: \underline{https://www.shibaura-it.ac.jp/faculty/systems/mathsci/index.html}$

- 6-4 芝浦工業大学「専任教員人事規定」
- 6-5 芝浦工業大学「専任教員任用手続規定 |
- 6-6 芝浦工業大学・教員業績システム

URL: https://asrv.sic.shibaura-it.ac.jp/REAC/

- 6-7 第 1203 回システム理工学部教授会資料(6)システム工学教育に関する将来像検 討委員会委員について
- 6-8 第 1301 回システム理工学部教授会資料(8)-1 学部学科再編等将来計画検討委員 会に関する WG 設置のお願い
- 6-9 数理科学科「談話会のご案内」

URL: https://www.mathsci.shibaura-it.ac.jp/04.html

6-10 福田亜希子教授が ICoMPAC2021 で Best Paper Award を受賞

URL : https://www.mathsci.shibaura-it.ac.jp/afukuda/wp-content/uploads/2022/08/best-paper-2.pdf

- 6-11 石渡哲哉教授が 2023 年度日本応用数理学会で論文賞(JJIAM 部門)を受賞 URL: https://jsiam.org/award/best_paper_award/best_paper_award/2023/
- 6-12 尾崎克久教授(数理科学科)が 2023 年日本応用数理学会研究部会連合発表会 にて優秀講演賞を受賞

URL: https://www.shibaura-it.ac.jp/headline/award/20240701 7070 003.html

第12章 産学連携活動

1. 現状分析

計算機科学・情報科学などの基礎研究分野や、制御理論、経済数学分野における数学の応用的な研究分野など、社会活動の基盤を支える理論として数学は活用されており、更に近年のデータ科学の隆盛により、特にこの領域での産業界との接点は増え始めている傾向にある。このような背景のなか、数理科学科では従来企業との共同研究はなされてこなかったが、最近は産学連携活動に積極的に参加する教員と学生が増えている。石渡研究室とZOZO RESEARCH とで機械学習分野における数学理論の共同研究が進展し、2022 年度から 2023 年度まで共同研究契約を締結し、共同研究についての定期的議論および学会等での研究発表を行っている【資料 12-1】。福田研究室はトヨタ自動車と京都大学の共同研究プロジェクト「モビリティ基盤数理研究」に参画している【資料 12-2】。

2. 分析を踏まえた長所と問題点

数学・数理科学の諸分野は、工学はもとより多くの社会基盤の理論的背景となっており、 数理科学科の各研究室の研究活動も潜在的に社会との接点を多く持ちうる。特に近年のデータ科学分野の発展により企業における研究活動との親和性は高まりつつあり、今後徐々に企業との共同研究が進展する可能性が見込まれる。また、このような共同研究が増えることは、数理科学科が標榜する「数理エンジニア」人材の育成という教育目標にも寄与すると考えられる。

数理科学科の各研究室はほとんどがいわゆる理学系研究室であるため、これまで企業との直接的な接点が極めて少ない状況であった。また、いわゆる製品開発といったことに直接かかわる研究分野でないことから、企業との共同研究において共通のゴールを設定することが難しかったことも、数理科学科における研究が産学連携にまで発展しなかった一因であると考えられる。

3. 改善・発展方策と全体のまとめ

従来学科全体として産学連携活動はほぼ皆無であったが、応用数学分野において、企業との共同研究が始まっている。特に近年は大学における数理科学研究と企業研究との接点は増えているので、今後共同研究に発展する研究が増える可能性はある。

4. 根拠資料

12-1 日本応用数理学会 2019 年度年会優秀ポスター賞

URL: https://annual2019.jsiam.org/2042

12-2 未来のモビリティ社会実現のための数理研究プロジェクト

URL: https://www.toyota.co.jp/jpn/tech/partner robot/news/202203 06.html

https://mobility.amp.i.kyoto-u.ac.jp/research/team01/

第13章 芝浦工大の SDGs への挑戦 "Strategy of SIT to promote SDGs"

1. 現状分析

学部においては、SDGs の達成への寄与に取り組み、学生が SDGs の意義や目的を理解・学修・実践することを奨めている【資料 13-1 項目 VIII】。そのため、SDGs に関連する科目は、17 ある目標のいずれ(複数もあり)に関連しているかをシラバス上に明記するようにしている【資料 13-2】。また、PBL 系科目の中には SDGs のいくつかをプロジェクトの大きな目標に据えた問題設定を行って授業を進めているものもある【資料 13-3】。最近、数理科学科でも国外大学との国際 PBL で、交通輸送、生産計画、疫病伝染などの、SDGs とかかわりがある社会問題に取組んでいる【資料 13-4】。

2. 分析を踏まえた長所と問題点

数理科学科の教員のほとんどは数学を専門としている。各教員はそれぞれの数学専門分野を究めることを目標として研究を進めているが、数学教育に関心の強い教員も多い。さらに学科には数学に限らない「教育」を研究分野としている教員もいる。また、学科専門科目には教科『数学』の教職課程科目に指定されているものも多い【資料 13-1 項目 VII】。これらの背景から、数理科学科は SDGs の目標 4「質の高い教育をみんなに」には親和性が高いと考えられる。

一方、応用数学系の研究には製造業や環境調査における解析・シミュレーションなどの 実用的問題に関わるものもある。そのうえ、旧来は数学の中で興味が閉じていると思われ てきた数論などの研究が、現代では符号・暗号理論など情報化社会に不可欠な技術の基礎 となったことなどから、理論数学系の研究も新しい技術の基盤になり得ることが知られて きた。これらは数理科学科における研究が SDGs の目標 9「産業と技術革新の基盤をつく ろう」に貢献し得ることを示唆している。

問題点としては、数理科学科では SDGs の理解は必ずしも浸透していない。学生は学部 共通科目を通して SDGs に触れる機会があり、一部の教員よりも理解が深いとさえいえる。 SDGs の意義や目的の学科教員への周知が目下の問題である。

3. 改善・発展方策と全体のまとめ

数理科学科においては、一部の教員を除き、SDGs への理解は十分深いとはいえない。しかし、SDGs の目標 4 や目標 9 には数理科学科の教育研究理念と合致する部分もある。さらに、数学を学ぶことは論理的思考力を高め、合理的行動を促すことにつながる。これは、数理科学が SDGs のすべての目標に貢献し得ることを示唆している。まずは、SDGs の意義・目的の学科教員への周知を進め、そのうえで個々の教育・研究が SDGs のいずれかの目標に貢献し得るかどうか検討してもらうことが、学科における SDGs への取り組みの第一歩となる。

4. 根拠資料

13-1 学修の手引(2024年度システム理工学部)

URL: https://guide.shibaura-it.ac.jp/tebiki2024/systems/

13-2 システム理工学部シラバス

URL: http://syllabus.sic.shibaura-it.ac.jp/

13-3 2018 年度システム工学演習 A ガイダンス資料

13-4 (1) Global Project Based Learning (GPBL) 2019 at ITS Indonesia

URL: https://youtu.be/D5rk7n7onUE

(2) Global Project Based Learning (GPBL) 2019 at SIT Japan

URL: https://youtu.be/0jrY0zQksZg

(3) Global Project Based Learning (GPBL) Mathematics 2020 (Online)

URL: https://youtu.be/CiTouo50u-8